Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислород гем-белками

Рис. 21-24. Завершающая стадия метаболическою окисления-дыхательная цепь. Все ко.мпоненты цепи собраны па внутренней поверхности внутренней мембраны митохондрии в четыре макромолекулярных комплекса, содержащих цитохромы, флавопротеиды и другие негемиповые железосодержащие белки. Кофермент р, или убихинон, и цитохром с играют роль переносчиков протонов и электронов от одного комплекса к следующему. Восстановление осуществляется путем переноса протонов до тех пор, пока этот процесс не достигнет кофермента Q, после чего оно осуществляется путем переноса электронов, а протоны переходят в раствор. Электроны и протоны снова объединяются в конце цепи, когда кислород восстанавливается до воды. Свободная энергия запасается в молекулах АТФ, образующихся в трех из четырех комплексов. Рис. 21-24. Завершающая стадия метаболическою <a href="/info/526112">окисления-дыхательная цепь</a>. Все ко.<a href="/info/933341">мпоненты</a> цепи собраны па <a href="/info/93820">внутренней поверхности внутренней</a> <a href="/info/101342">мембраны митохондрии</a> в четыре <a href="/info/1350480">макромолекулярных комплекса</a>, содержащих цитохромы, флавопротеиды и другие негемиповые <a href="/info/168868">железосодержащие белки</a>. Кофермент р, или убихинон, и цитохром с <a href="/info/1907646">играют роль</a> <a href="/info/386253">переносчиков протонов</a> и электронов от одного комплекса к следующему. Восстановление осуществляется <a href="/info/1898102">путем переноса протонов</a> до тех пор, пока этот процесс не достигнет кофермента Q, после чего оно осуществляется <a href="/info/1896993">путем переноса электронов</a>, а <a href="/info/713953">протоны переходят</a> в раствор. Электроны и протоны снова объединяются в <a href="/info/626669">конце цепи</a>, когда кислород восстанавливается до воды. <a href="/info/2431">Свободная энергия</a> запасается в молекулах АТФ, образующихся в трех из четырех комплексов.

    Элементарный состав. Помимо углерода, водорода и кислорода, белки всегда содержат азот. Большинство жз них содержит серу, а некоторые йод, фосфор (казеин молока) и даже железо (гемоглобин крови). Элементарный состав белков характеризуют следующими цифрами  [c.378]

    Транспортные белки Переносчики кислорода Гемоглобин (переносит [c.259]

    Белковая цепь приобретает чрезвычайную устойчивость, сворачиваясь в правостороннюю а-спираль (рис. 21-17). В такой структуре аминокислотные остатки направлены наружу от оси спирали, а группы С=0 одного витка спирали связаны с группами Н—N следующего витка водородными связями. Водородные связи образуются между сильно электроотрицательными атомами, например Р или О, и атомами водорода с небольшим локальным избытком положительного заряда. Такие связи имеют главным образом электростатическое происхождение и зависят от способности двух атомов к тесному сближению. Атомы О и Р, имеющие небольшие размеры, способны давать такие связи более крупные атомы О обычно не могут образовать водородных связей. В белках водородные связи играют очень важную роль они возникают между кислородным атомом карбонильной группы и атомом водорода аминогруппы, принадлежащими полипептидной цепи. Как видно из рис. 21-13, частично двоесвязный характер пептидной связи С—N не только обеспечивает плоскостность пептидного звена, но также делает атом кислорода несколько отрицательным, а атом азота с присоединенным к нему атомом водорода несколько положительными. Это и создает благоприятные условия для образования водородных связей. [c.316]

    Однако, зная только порядок расположения аминокислот, нельзя еще представить себе совершенно отчетливо все уровни организации белковой молекулы. Даже прн осторожном нагревании белки нередко необратимо утрачивают свойства, присущие им в природном состоянии, иными словами, происходит денатурация белков. Причем обычно денатурация не сопровождается расщеплением полипептидной цепи чтобы расщепить цепь, нужны более жесткие условия. Следовательно, цепи образуют какую-то определенную структуру под действием слабых вторичных связей . В образовании таких вторичных связей обычно участвует атом водорода, находящийся между атомами азота и кислорода. Такая водородная связь в двадцать раз слабее обычной валентной связи. [c.130]


    В белке волос и шерсти, а также других кератинах а-спирали многократно скручены друг с другом в многожильные тяжи, которые образуют видимые глазом нити. Цепи белков шелка вытянуты во всю длину (а не свернуты в спираль) и соединены с параллельными цепями водородными связями в листы, показанные на рис. 21-2,а. В глобулярных белках цепи не являются полностью вытянутыми или полностью свернутыми в а-спираль чтобы молекула имела компактную структуру, она должна быть надлежащим образом деформирована. В молекуле миоглобина (см. рис. 20-25) 153 аминокислоты белковой цепи свернуты в восемь витков а-спирали (обозначенные на рисунке буквами А-Н), которые в свою очередь свернуты так, что в результате получается компактная молекула. Витки Е и Р образуют карман, в котором помещается группа гема, и молекула кислорода может связываться с атомом железа этого гема. Подобным же образом построена молекула гемоглобина, которая состоит из четырех миоглобиновых единиц (см. рис. 20-26). Небольшой белок цитохром с (см. рис. 20-23) имеет меньше места для витков а-спирали. 103 аминокислоты этого белка свернуты вокруг его группы гема подобно кокону, оставляя к ней доступ только в одном месте. У более крупных ферментов, например трипсина (223 аминокислоты) и карбоксипептидазы (307 аминокислот) в центре молекулы имеются области, где белковая цепь делает ряд зигзагов, образуя несколько параллельных нитей, скрепленных водородными связями подобно тому, как это имеет место в молекуле шелка. [c.317]

    Гетероцепные полимеры содержат в основной цепи кроме атомов углерода еще и атомы кислорода или азота, кремния, фосфора и других элементов. К ним относятся целлюлоза, белки, полиамиды, (в частности, капрон), полиэфиры, полиуретаны, кремнийорганические полимеры и др. [c.188]

    В состав белков входят углерод, водород, кислород, азот, v часто сера, фосфор, н<елезо. Молекулярные массы белков очень велики — от 1500 до нескольких миллионов. [c.498]

    Минеральными удобрениями называют соли, содержащие элементы, необходимые для питания растений и вносимые в почву для получения высоких и устойчивых урожаев. В состав растений входят около 60 химических элементов. Для образования ткани растения, его роста и развития требуются в первую очередь углерод, кислород и водород, образующие основную часть растительной массы, далее азот, фосфор, калий, магний, сера, кальций и железо. Источниками веществ, необходимых для питания растений, служат воздух и почва. Из воздуха растения извлекают основную массу углерода в виде диоксида углерода, усваиваемого путем фотосинтеза, а из почвы — воду и минеральные вещества. Некоторое количество диоксида углерода воспринимается корневой системой растений из почвы. Среди минеральных веществ особенно важны для жизнедеятельности растений азот, фосфор и калий. Эти элементы способствуют обмену веществ в растительных клетках, росту растений и особенно плодов, повышают содержание ценных веществ (крахмала в картофеле, сахара в све-кле, фруктах и ягодах, белка в зерне), повышают морозостойкость и засухоустойчивость растений, а также их стойкость к заболеваниям. При интенсивном земледелии почва истощается, т. е. в ней резко снижается содержание усваиваемых растениями минеральных веществ, в первую очередь растворимых в воде и почвенных кислотах соединений азота, фосфора и калия. Истощение почвы снижает урожайность и качество сельскохозяйственных культур. Уменьшение содержания питательных веществ в почве необходимо постоянно компенсировать внесением удобрений. Ввиду огромных масштабов потребления минеральные удобрения— наиболее крупнотоннажный вид химической продукции, годовое количество которой составляет десятки миллионов тонн. [c.143]

    Бактерии, связывающие кислород Белки [c.543]

    Дыхательный коэффициент для белков хотя и больше, чем для жиров, но все же меньше единицы. Это и понятно, так как по процентному содержанию кислорода белки занимают промежуточное место между углеводами и жирами. Ввиду того что молекулярная формула для большинства белков не известна, дыхательный коэффициент в этом случае вычисляется более сложным и косвенным путем RQ для белков оказался равным 0,8. Энергетическая ценность, т. е. теплота сгорания белков, жиров и углеводов, также не одинакова. При окислении в организме до конечных продуктов 1 г жира освобождается 9,3 ккал, [c.210]

    Выход из тупика в третий раз оказался возможен благодаря процессам координационной химии. Появились такие молекулы, состоящие из железа, порфирина и белка, в которых железо могло связывать молекулу кислорода, не окисляясь при этом. Окисление Ре(П) после первой стадии связывания в них не осуществляется. Кислород просто переносится в различные участки организма, чтобы высвободиться при надлежащих условиях-кислотности и недостатке кислорода. Одна из таких молекул, гемоглобин, [c.260]


    В связывании кислорода белками могут участвовать несколько [c.140]

    Помимо углерода, водорода и кислорода, белки содержат азот и серу. Иногда в белках присутствуют (в следовых количествах) и другие элементы, в том числе ионы металлов. [c.309]

    Ядро клетки по своему составу представляет ту же протоплазму, только более уплотненную и с прибавлением небольшого количества фосфорных соединений. Кроме того, клетки содержат в себе некоторые специализированные скопления белка — пластиды, представляющие собой как бы лабораторию органической химии, в которой происходят выработка и преобразование различного рода органических соединений. К пластидам относятся, например, хлорофилловые зерна растений, поглощающих угольную кислоту и обладающих способностью разлагать ее на свету на ее составные элементы, причем кислород возвращается в воздух, а углерод усваивается и отлагается в растениях в виде углеводов крахмала, сахара и пр. Усвоение углерода путем расщепления, углекислого газа происходит по уравнению  [c.22]

    Большинство находящихся в растениях органических соединений содержит углерод, водород и кислород, белки, помимо них,— еще азот, серу, фосфор, нуклеиновые кислоты — азот и фосфор, а хлорофилл — азот и магний в состав воды входят водород и кислород. Помимо этого, в клеточном соке находятся в виде соединений, играющих большую роль, кальций, калий, фосфор. Если добавить еще железо, входящее в состав ферментов, то суммарное содержание всех этих десяти макроэлементов растений близко к 100%. Кроме них, в небольших количествах (<0,001 %) содержатся еще микроэлементы — бор, медь, цинк, марганец, молибден и др., которые, однако, необходимы для нормальной жизнедеятельности растений. [c.87]

    Водородные связи играют гораздо более важную роль для живых систем, чем можно предположить только по структуре воды. Они лежат в основе главного способа связывания белковых молекул, о котором будет рассказано в гл. 21. Без таких связей между атомами кислорода карбонильных групп и атомами водорода аминогрупп не могли бы надлежащим образом возникать спиральные полипептидные цепи, образующие молекулы белков. [c.621]

    Многие вещестпа, содержащие кислород (белки, крахмал, клетчатка), входят в состав растительных и животных организмов, их клеток и тканей. [c.67]

    Белки могут выполнять множество функций. Некоторые из них — ферменты - катализируют реакции, как уже было описано. Другие служат гормонами — специальными веществами, выделяемыми некоторыми органами и разносимыми кровью к другим органам, где они вызывают биохимическую активность (например, ряд гормонов переключает деятельность женского организма на подготовку к беременности). Третьи - транспортные белки — служат переносчиками жизненно важных веществ в организме из одного места в другое. Гемоглобин - одна из таких молекул он разносит кислород от легких к тканям. Белки также служат структурным материалом тела. Волосы, мышцы, кожа, хрящи и ногти построены из белков (см. также табл. ГУ.б в главе о пище). [c.452]

    Возможен иной взгляд на эту структуру, связанный с существованием двух других типов белков, родственных глобину. Миоглобин-связывающий кислород белок-мономер животных, аминокислотная последовательность которого позволяет предположить наличие общего (хотя и древнего) происхождения с субъединицами глобина. Леггемоглобины-это связывающие кислород белки бобовых растений, так же как и миоглобин, являющиеся мономерами. Они также могут иметь общее происхождение с другими белками, связывающими гем. [c.265]

    С органическими соединениями, молекулы которых отличались внушительными размерами, дело обстояло сложнее. Используя методы начала XIX в., было очень тяжело, вероятно и невозможно, установить точную эмпирическую формулу даже такого довольно простого по сравнению, например, с белками органического соединения, как морфин. В настоящее время известно, что в молекуле морфина содержатся 17 атомов углерода, 19 атомов водорода, 3 атома кислорода и 1 атом азота ( ijHisNOa). Эмпирическая формула уксусной кислоты (С2Н4О2) намного проще, чем формула морфина, но и относительно этой формулы в первой половине XIX в. не было единога мнения. Однако, поскольку химики собирались изучать строение молекул органических веществ, начинать им необходимо было с установления эмпирических формул. [c.74]

    Водородная связь (рис. VI 1.9,л) - взаимодействие между атомом водорода (несущим частичный положительный заряд) и атомами с высокой электроотрицательностью - кислородом или азотом. В белковых цепях атомы водорода, ковалентно связанные с атомами азота, взаимодействуют с атомами кислорода соседней цепи или другого участка этой же цепи. Все активные белки содержат сотни водородных связей, расположенных тесно вдоль их цепей. Многие водородные связи служат для удержания белковой цепи в шарообразной или плоской форме. [c.454]

    Электромагн. излучения еще более высокой энергии (рентгеновское и у-излуче-ние) способны ионизовать в-во. Ионизация происходит случайным образом, поэтому молекулы, являющиеся наяб. распространенными в объекте, больще других подвергаются ионизации. При облучении живой материи, на 70-90% состоящей из воды, б. ч. энергии будет поглощена молекулами воды и поэтому мутагенный эффект при действии этих агентов возникает гл. обр. вследствие модификации ДНК продуктами радиолиза воды. Наиб, вклад в развитие радиац. поражения ДНК вносит радикал ОН . При взаимод. с ДНК 80% всех радикалов ОН атакуют основания ДНК, остальные-дезоксирибозную часть молекулы. Возникающие первичные продукты затем вступают в разнообразные вторичные р-ции как с теми же продуктами радиолиза воды, так и с кислородом, белками, низкомол. компонентами клетки, а также подвергаются диспропорционированию, изомеризации, гидролизу. Возникает широкий спектр разнообразных изменений первичной и вторичной структуры ДНК измененные основания, апури-новые я апиримидиновые сайты (участки с удаленными основаниями), разрывы связей в дезоксирибозе, одно- и двунитевые разрывы цепей ДНК. Точная роль каждого из возникающих повреждений структуры ДНК в формировании мутагенного эффекта все еще остается невыясненной. Предполагают, что ключевую роль в этом процессе играют продукты радиолиза тимина. [c.153]

    Иногда небольшие изменения окружающей среды могут вызвать серьезные изменения в форме белка, что скажется на его функциях. Например, легкое возрастание pH крови изменяет молекулу гемоглобина так, что она становится способной проходить к внутренней поверхности легких и в молекуле открывается атом железа, в результате легко связывается кислород. При понижении pH цепь снова сворачивается, помогая выделить кислород после переноса его к клетке, где он необходим. [c.455]

    Оптимальные условия накопления биомассы ограничиваются прежде всего определенной температурой, значением pH среды, количеством и скоростью поступления питательных веществ, кислорода воздуха и др. Нормальные алканы используются микроорганизмами в качестве питания. Они вместе с аммиаком и минеральными солями превращаются в продукты обмена, представляющие биомассу, состоящую в основном из протеинов. В промышленном процессе производства белка важной ступенью является выделение продуктов ферментации и заключительная обработка полученных клеток микроорганизмов. Чистота углеводородного сырья оказывает существенное влияние на экономику процесса. [c.206]

    Бактериальная нитрогеназа инактивируется свободным кислородом, поэтому время ее полужизни иа воздухе очень коротко. Это означает, что в процессе эволюции должны были выработаться сложные механизмы, способные обеспечить бактероидам анаэробные условия в клетках корня при достаточном снабжении кислородом самих корней. В частности. Rhizobium индуцирует в клетках хозяина синтез леггелоглобиня-связывающего кислород белка, аналогичного миоглобину млекопитающих Молекулы леггемоглобниа, окружая бактероиды, препятствуют избыточному снабжению их кислородом. [c.179]

    Многие жизненно важные природные соединения содержат фрагменты из четырех связанных вместе пиррольных колец, которые иногда могут быть в восстановленной форме. Такие тетрапиррольные фрагменты встречаются в переносящих кислород белках (например, в гемоглобине), в цитохромах (белках, отвечающих за транспорт. электрона в цепи дыхания), в хлорофиллах и бактериохлорофиллах (молекулах, непосредственно участвующих в процессах фотосинтеза в растениях и фотосинтезирующих бактериях), в витамине В12 (витамине, препятствующем возникновению злокачественного малокровия), в-пигментах желчи и в некоторых токсинах морских организмов. На рис. 13.1 в качестве примеров приведены некоторые важные природные тетрапиррольные соединения, а также пример фталоцианина. Фталоцианины не являются природными тетра-пиррольными соединениями они синтезируются в большом масштабе и используются как красители. [c.285]

    Дыхательный коэффициент для белков хотя и больше, чем для жиров, но все же меньше единицы. Это и понятно, так как по процентному содержанию кислорода белки занимают промежуточное место между углев о, д ами и жирами. Ввиду того что молекулярная формула для большинства белков не известна, дыхательный коэффициент в этом случае вычисляется более сложным и косвенным путем RQ, для белков оказался равным 0,8. Энергетическая ценность, т. е. теплота сгорания белков, жиров и углеводов, также не одинакова. При окислении в организме до конечных продуктов 1 г жира освобождается 9,3 ккал, 1 г белков или гликогена —4,1 ккал. Следует отметить, что жиры и углеводы дают при сгорании в организме такое же количество калорий, как и при сжигании ихвкалориметрической бомбе. Это понятно, так как и в том, и в другом случае образуются одинаковые конечные продукты (СОа и НаО). Иначе обстоит дело с белками. При сжигании в калориметрической бомбе I г белка освобождается 5,6 ккал, а в организме при окислении такого же количества белка освобождается только 4,1 ккал. Это объясняется тем, что при сжигании в бомбе разрушение азотистой части белков происходит целиком и доходит до NHg, а в организме имеет место лишь частичное окисление, заканчивающееся образованием мочевины, содержащей еще некоторый запас энергии (см. главу Обмен белков ). Данные о потреблении кислорода и освобождении энергии при сгорании белков, жиров и углеводов представлены в табл. 16. [c.223]

    Структуры гемоглобйнов и миоглобинов описаны в разд. 7.2. Проблемы, возникающие при исследованиях обратимого связывания кислорода белками, сформулированы в разд. 7.3 и затем обсуждены в разд. 7.4—7.7. Основные выводы собраны в разд. 7.8. В этих разделах, как уже было отмечено, гемоглобин обозначается НЬ, а миоглобин — МЬ. [c.141]

    К настоящему времени получено большое количество фактов, объясняющих механизм действия ферментов фенолазного комплекса. О детальной структуре переносящих кислород белков известно мало. Есть данные, что они содержат два атома меди (Си+). Исходя из константы ионизации иона меди (Си+) с гемоцианином, которая близка по величине константе комплекса Си+-цистеин, полагают, что местом связи меди с белком являются группы — SH (цистеина или гистидина). [c.148]

    Все сказанное выше о различных типах мышц дает лишь частичное нредставление об их реально существующем разнообразии В скелетных мышцах взрослого человека, например, мы находим смесь мышечных клеток трех типов белые мышечные клетки, приспособленные для быстрого анаэробного сокращения (АТР синтезируется в них в основном за счет гликолиза) красные мышечные клетки, специализированные для медленного и более продолжительного сокращения и использующие главным образом аэробный метаболизм (их цвет обусловлен высокой концентрацией запасающего кислород белка - миоглобина) и наконец, мышечные клетки промежуточного типа, синтезирующие АТР как аэробным, так и анаэробным путем (разд. 2.3.2). В каждом из этих типов есть еще подтипы, с помощью которых происходит тонкая настройка каждой мышцы на выполнение характерных для нее физиологических функций и на соответствуюший метаболизм. При этом одни и те же мышцы у взрослого человека и у плода различны. [c.273]

    В одной и той же мышце можно найти существующие бок о бок мышечные клетки разных типов - каждый тип с особым набором белковых изоформ. У взрослых животных два тина легко распознать даже невооруженным глазом. Красные мышечные волокна, как, например, в темном курином мясе, богаты связывающим кислород белком миоглобином. Белые мышечные волокна, такие как в белом курином мясе, содержат гораздо меньше миоглобина. Различное содержание миоглобина-белка, родственного гемоглобину, - отражает различную потребность в кислороде для красных волокон более характерно окислгггельное фосфорилирование, для белых - анаэробный гликолиз. Различные тины метаболизма в свою очередь связаны с разными тинами сократительной активности Красные волокна в ответ на стимуляцию сокращаются медленно, они меньше подвержены утомлению и более эффек- [c.191]

    Осуществляя синтез химических веществ, можно часть обычных изотопов заменить на редкие стабильные изотопы. Например, водород-1 можно заменить на водород-2, углерод-12 — на углерод-13, азот-14 — на азот-15, а кислород-16 — на кислород-18. С помощью таких жченых соединений можно изучать механизмы реакций, происходящих в живых тканях. Новатором в такого рода работе был американский биохимик Рудольф Шонхеймер (1898—1941), который, используя водород-2 и азот-15, провел важные исследования жиров и белков. После окончания второй мировой войны такие изотопы стали более доступны, что позволило провести более тщательное изучение механизмов реакций. Примером того, какую роль могут сыграть изотопы, служит работа американского биохимика Мелвина Келвина (род. в 1911 г.). В 50-х годах XX в. он применил углерод-14 для изучения механизма реакций фотосинтеза. Работу эту Келвин проделал с такой обстоятельностью, которая всего лишь двадцать лет назад считалась совершенно невозможной. [c.173]

    Эволюция живого мира в течение геологического времени приводит к расширению круга таксонов, к увеличению разнообразия форм и замене одних форм другими. Отмечаются и различия в биохимическом составе организмов, стоящих на различных ступенях генетической лестницы, несмотря на единство биохимического плана строения живых организмов. Органические компоненты живых веществ представлены главным образом белками, жирами, углеводами и построены из атомов углерода, водорода, кислорода, азота, серы, фосфора. Клетки живых организмов и растений используют эти элеме+iTbi в качестве источника химической энергии в ходе метаболизма. Распад химических веществ в клетках различных животных осуществляется по единому плану. Однако имеется и ряд различий в биохимическом составе организмов, обусловленных как эволюцией живого вещества в фанерозое, так и различием условий жизни в разных бассейнах в одно и то же геологическое время. [c.188]

    Химический состав опорных тканей позвоночных отличается от состава скелетных тканей беспозвоночных — спонгина, хитина и др. В покровах позвоночных присутствует особый белок - кератин. Позвоночные отличаются от беспозвоночных и действием пищерастительных ферментов, более высоким отношением (Ма + К)/ Са + Мд) в жидкой фазе внутренней среды. Среди беспозвоночных только у оболочников есть целлюлозная оболочка, имеется ванадий в крови в особых окрашенных клетках, а у круглоротых - соединительно-тканный скелет и хрящ, а также особый дыхательный пигмент — аритрокруорин с наименьшей для позвоночных молекулярной массой (17 600). Отличительная черта сипункулид — древних групп морских беспозвоночных - наличие специального переносчика кислорода - гемэритрина и наличие в эритроцитах значительного количества аллантоиновой кислоты. Для насекомых характерно высокое содержание в крови аминокислот, мочевой кислоты и редуцирующих и несбраживаемых веществ, в хитиновом покрове отсутствуют смолы, для членистоногих — наличие специфической (только для их групп) фенолазы в крови. Таким образом, можно констатировать, что систематические группы животных имеют свои биохимические особенности. Такие же особенности наблюдаются и у растений для различных систематических групп - наличие специфических белков, жиров, углеводов, алкалоидов, глюкозидов, ферментных систем. [c.189]

    БольшуЕО роль играют хелатные соединения и в природе. Так, гемоглобин состоит из комплекса — гема, связанного с белком — глобином, В геме центральным ионом является ион Fe +, вокруг которого координированы четыре атома азота, принадлежащие к сложному лиганду с циклическими группировками. Гемоглобин обратимо присоединяет кислород и доставляет его из легких по кровеносной системе ко всем тканям. Хлорофилл, участвующий п процессах фотосинтеза в растениях, построен аналогично, но в качестве центрального иона содержит Mg +. [c.588]

    Составная часть белков - ]]е-реносчнков кислорода (гемоглобина и миоглобина) [c.278]

    Наиболее существенны кислород, углерод, водород и азот. Вместе они образуют более 99% массы тела человека. 63% этих атомов - это водород, 25% - кислород, около 10% - углерод и 1,4% приходится на азот. Большинство из них присутствуют в организме в составе таких соединений, как белки, жиры и угленоды, которые описывались в главе, посвященной пище (см. гл. IV, разд. Б.З, Б.4, В.З и рис. 1 .3 - У1.9). [c.441]

    Все белки являются полимерами аминокислот. Общая формула такого полимера показана в нижней части рис. 21-1, а модель отдельной аминокислоты-на рис. 21-12. Ферменты представляют собой один из классов белков, причем, видимо, наиболее важный. Ферменты имеют компактные молекулы с молекулярной массой от 10000 до нескольких миллионов и диаметром от 20 А и выше. Они выполняют роль катализаторов, регули-руюидах биохимические реакции. Другие компактные молекулы белков, например миоглобин и гемоглобин, выполняют роль переносчиков и накопителей молекулярного кислорода (см. рис. 20-25, 20-26). Цитохромы-это белки, способные к окислительно-восстановительным реакциям и играющие роль промежуточных звеньев при извлечении энергии из пищевых продуктов (см. рис. 20-23). Молекулы гамма-глобулинов с молекулярной массой порядка 160000 представляют собой так называемые антитела, защитное действие которых заключается в том, что они присоединяются к вирусам, бактериям и другим чужеродным телам в живом организме и осаждают их из жидких сред. Все перечисленные белки относятся к глобулярным белкам. [c.313]

    Азот — основной компонент атмосферы Земли (78,09% по объему, или 75,6% по массе, всего около 4-10 кг). В космосе он занимает четвертое место вслед за водородом, гелием и кислородом. Свободный азот вместе с аммиаком N [3 и хлоридом аммония ЫН. С присутствует в вулканических газах. Органические соединения азота содержатся в нефти и угле. В живых организмах его до 0,3% в виде соединений. Присутствие связанчого азота в почве — обязательное условие земледелия. Растения, получая азот из почвы в виде минеральных солей, используют его для синтеза белков, витаминов и другие жизненно важных веществ. [c.119]


Смотреть страницы где упоминается термин Кислород гем-белками: [c.131]    [c.50]    [c.27]    [c.262]    [c.320]    [c.48]    [c.345]   
ЯМР высокого разрешения макромолекул (1977) -- [ c.368 , c.369 , c.375 , c.376 ]

ЯМР высокого разрешения макромолекул (1977) -- [ c.368 , c.369 , c.375 , c.376 ]




ПОИСК





Смотрите так же термины и статьи:

Белки переносчики кислорода

Белки, переносящие кислород

Изучение участия активных форм кислорода в процессах УФ-модификации белковых молекул



© 2025 chem21.info Реклама на сайте