Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Высокомолекулярные соединения сухая перегонка

    Наиболее важна и многообразна группа химических процессов, связанных с изменением химического состава и свойств веществ. К ним относятся процессы горения — сжигание топлива, серы, пирита и других веществ пирогенные процессы — коксование углей, крекинг нефти, сухая перегонка дерева электрохимические процессы — электролиз растворов и расплавов солей, электроосаждение металлов электротермические процессы — получение карбида кальция, электровозгонка фосфора, плавка стали процессы восстановления — получение железа и других металлов из руд и химических соединений термическая диссоциация — получение извести и глинозема обжиг, спекание — высокотемпературный синтез силикатов, получение цемента и керамики синтез неорганических соединений — получение кислот, щелочей, металлических сплавов и других неорганических веществ гидрирование — синтез аммиака, метанола, гидрогенизация жиров основной органический синтез веществ на основе оксида углерода (II), олефинов, ацетилена и других органических соединений полимеризация и поликонденсация — получение высокомолекулярных органических соединений и на их основе синтетических каучуков, резин, пластмасс и т. д. [c.178]


    Применение приведенной выше методики для ряда полимеров дает хорошие результаты и позволяет сравнительно легко и надежно идентифицировать полимеры. Однако полярографический метод идентификации нельзя, конечно, считать единственным и универсальным методом, позволяющим полностью решить сложный вопрос о химической природе высокомолекулярного соединения. В некоторых случаях этот метод малоэффективен, например для поликапролактама, образующего при деполимеризации капролактам, не восстанавливающийся на ртутном капающем электроде и не присоединяющий брома. Получающийся нитропродукт не может служить надежным и единственным показателем для идентификации данного полимера. Аналогичная картина наблюдается также для полиуретана и ацетилцеллюлозы. В этих случаях определение) по описанной методике фактически должно сводиться к наблюдению за поведением образцов при сухой перегонке, а также к исследованию некоторых специальных свойств раствора, продуктов сухой перегонки. [c.219]

    Пиролиз как способ нагревания органических веществ до относительно высоких температур без доступа воздуха сопровождается разложением высокомолекулярных соединений на низкомолекулярные, жидкую и газообразную, фракции, коксованием и смолообразованием. В индустриальных технологиях его используют при сухой перегонке дерева, коксовании угля, крекинге нефти и в других случаях. [c.18]

    Первую группу реакций, которые нужно рассмотреть в связи с реальными способами получения пиридинового цикла, составляют пирогенетические реакции, среди которых наиболее важной является сухая перегонка каменного угля. Действительный путь образования азотистых оснований при этом процессе неизвестен, и о нем имеются только догадки. Каменный уголь представляет собой материал сложного состава проичем состав его может изменяться в широких пределах. Так, антрацит может иметь до 88% углерода, тогда как битумный уголь, употребляемый чаще всего для получения побочных продуктов коксования, содержит около 75—80% углерода, 6% водорода, 3—5% кислорода, 5—7% золы и по 1—2% азота и серы. Углерод, равно как и другие элементы, не находится в свободном состоянии, а входит в состав сложного высокомолекулярного соединения. При 1000—1300° наступает разложение угля, в результате которого большая часть кислорода теряется в виде углекислого газа или окиси углерода, водород выделяется в свободном виде, азот выделяется либо в виде аммиака, либо в соединении с углеродом и водородом в виде азотистых оснований или веществ слабокислого характера—индола и карбазола. Образуются и другие соединения ароматического характера—бензол, толуол, тиофен и Др. При низкотемпературном коксовании (600—700°) образуется значительно больший процент алифатических и алициклических соединений, и это позволяет высказать предположение, что заключительной стадией образования веществ ароматического характера является дегидрирование. Во всяком случае, кажется очень правдоподобным, что пиридин и его гомологи образуются путем превращения [c.346]


    Наибольшее содержание азота наблюдается в смолах сухой перегонки сланцев США. Интересно, что с уменьшением содержания азота в смолах уменьшается неперегоняющийся остаток смол. Большая часть азотистых соединений сланцевых смол является составной частью высокомолекулярного неперегоняющегося остатка. В перегоняющихся фракциях, полученных термической переработкой твердых горючих ископаемых, азотистых соединений присутствует больше, чем в аналогичных фракциях нефтей. Например, во фракции 67—213 °С, полученной из смолы колорадских сланцев, содержание общего азота достигает 1,21%, в том числе основного 1,01%. Выход такой фракции на смолу составлял около 6% вес. Лишь после очистки серной кислотой, а затем щелочью содержание во фракции общего азота снижается до 0,39%, в том числе основного до 0,22% [24]. В результате очистки содержание общего азота в сланцевых бензинах может быть уменьшено до 0,02% [25]. [c.27]

    K. получают также сухой перегонкой продук-тов щелочного расщепления касторового масла, окислением циклодекана азотной к-той и др. способами. С. к. используют при получении высокомолекулярных соединений, пластификаторов и для др. целей. Э. Е. Нифантьев. [c.386]

    Эфиры ароматических оксисоединений содержатся в древесной растительности. Производные фенолов с метоксильными группами входят в состав сложного высокомолекулярного вещества лигнина, являющегося одним из главнейших компонентов древесины (см. стр. 375). Они могут образовываться при разложении лигнина. Так, в смоляной фракции, выделяющейся при сухой перегонке древесины, наряду со многими другими соединениями содержится целый ряд эфиров двухатомного фенола (пирокатехина) и трехатомного (пирогаллола), [c.256]

    Строение и синтез каучука. По своей химической природе каучук является высокомолекулярным непредельным углеводородом и представлет собой смесь сложных полимерных молекул. Как непредельное соединение, каучук присоединяет бром и гало-идоводороды, причем на одну группу СзНд присоединяются два атома брома или одна молекула галоидоводорода. Следовательно, на каждую группу СдИ в молекуле каучука приходится одна двойная связь. При сухой перегонке каучука образуется, наряду с другими углеводородами, изопрен СаНд. Первые сведения о строении каучука были получены в 1905 г., когда Гарриес, обработав каучук озоном, получил стекловидный озонид состава СюН бОб. При разложении озонида водой образуется до 90% левулинового альдегида СНз—СО—СНз—СНг—СНО. [c.100]

    Как и п[)и всяком термическом процессе превращения органических веществ, при сухой перегонке углей и сланцев имеют место два основных типа химических реакций распад и уплотнение. В первую очередь начинают распадаться наиболее термически неустойчивые вещества с наибольшим содержанием кислорода. Опи распадаются при относительно низких температурах с выделением углекислоты и воды и образованием высокомолекулярных веществ, обедненных кислородом. При повышеттии температуры, однако, и эти вещсства подвергаются распаду. При этом, наряду с дезоксидацией, с продолжающимся выделением углекислоты и воды, наступают более глубокие изменения с образованием, с одной стороны, низкомолекулярных углсводг>родов, сероводорода, водорода и ам-мхшка и, с другой стороны, более высокомолекулярных продуктов, представляющих собой углеводороды разнообразного строения, кислородные, сернистые и азотистый соединения, входящие в состав паров смолы. [c.414]

    Следует отметить, что современное состояние знаний относительно природы, состава, строения и свойств каменных. углей таково, что эти вопросы еще далеки от окончательного разрешения. В настоящее время есть достаточно оснований считать, что каменный уголь является высокомолекулярным веществом, построенным из групп соединений не установленного точно строения, содержащих так или иначе сконденсированные ше-стичленные углеродные циклы с малым содержанием водорода и еще меньшим кислорода. Органические вещества каменного угля могут подвергаться сухой перегонке, что и осуществляется в больших масштабах на коксохимических и газовых заводах. При нагревании каменного угля без доступа воздуха происходит дальнейшее обугливание, причем отгоняются газообразные вещества (коксовый газ), вода и каменноугольная смола. После отгонки этих веществ остается кокс, почти целиком состоящий из углерода. [c.29]

    Основными спутниками целлюлозы в природных растительных материалах являются лигнин, гемицеллюлозы, пектиновые вещества и смолы (камеди). Лигнин представляет собой ту часть древесины, которая не растворяется в 72%-НОЙ серной и в 40—42%-ной соляной кислотах. Это аморфное неплавкое и нерастворимое вещество, относимое в настоящее время к высокомолекулярным соединениям. Строение лигнина до сих пор в достаточной степени еще не выяснено, но установлено наличие в нем многих функциональных групп, из которых важнейшими являются метоксильные группы СНзО—, образующие метиловый спирт при сухой перегонке древесины, альдегидные, гидроксильные и диоксиметиленовые —О—СНг—О—, которые при кипячении с кислотами отщепляются в виде СНгО, Основными структурными элементами лигнина являются производные фенилпропана. [c.357]


    Химическая характеристика высокомолекулярных соединений путем исследования продуктов деструкции основывается на особенностях строения полимеров. В некоторых случаях продукты распада определенного строения получаются уже при сухой перегонке, для многих полимеров деструкция протекает вплоть до образования мономеров. При облучении ультрафиолетовыми лучами и при размоле в шаровой мельнице также происходит деструкция полимеров, но большей частью только до низкомолекулярных полимеров (например, при размоле полистирола в шаровой мельнице происходит деструкция до степени полимеризации около 100). Направленная деструкция, сопровождающаяся разрывом определенных связей в макромолекуле, позволяет сделать конкретные выводы о строении полимера. Такая реакция имеет место при расщеплении озонидов каучука (см. стр. 81), а также при гидролитическом расщеплении полисахаридов (см. стр. 86, 87 и 91) и идентификации осколков макромолекул известными методами, используемыми для низкомолекулярных соединений. Исследования продуктов распада белков и нуклеиновых кислот также дали возможность сделать предварительные выводы о их строении и о строении структурных единиц (об анализе аминокислот см. стр. 97). О специфических методах ферментативного расщепления было уже упомянуто выше (см. стр. 92). Для установления строения поливинилового спирта, полученного из поливинилацетата, наряду с отсутствием янтарной кислоты в продуктах разложения (как показали Штаудингер и Штарк, см. стр. 107) решающим явился тот факт, что этот полимер не деструктируется или очень незначительно деструктируется такими реагентами, как йодная кислота, расщепляющая 1,2-гликоли (Мар-вел и Деноон). [c.182]


Смотреть страницы где упоминается термин Высокомолекулярные соединения сухая перегонка: [c.100]    [c.309]    [c.89]   
Химия высокомолекулярных соединений (1950) -- [ c.138 ]




ПОИСК





Смотрите так же термины и статьи:

Высокомолекулярные соединени

Высокомолекулярные соединения

Перегонка сухая

Соединения сухие



© 2024 chem21.info Реклама на сайте