Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции других неорганических веществ

    Помимо метаболических путей синтеза и распада аминокислот, нуклеотидов и других азотистых веществ у многих организмов имеется специализированный метаболизм включения избыточного азота в сравнительно малотоксичные продукты экскреции. Все эти стороны метаболизма азота будут рассматриваться в этой главе, но из-за исключительной сложности предмета изложение будет сжатым. Сначала мы рассмотрим реакции, с помощью которых из неорганических соединений образуются органические азотистые соединения, а затем обратимся к реакциям, затрагивающим азотный фонд. Далее мы рассмотрим специфические реакции синтеза и катаболизма индивидуальных азотистых соединений. [c.81]


    Как можно получить метилэтиловый эфир без примеси других эфиров, исходя из метилового и этилового спиртов и необходимых неорганических веществ Напишите соответствующие уравнения реакций. [c.54]

    Многообразие реакций ионного обмена позволяет широко использовать их при получении неорганических соединений. Иониты применяют для глубокой очистки соединений, являющихся исходным сырьем при получении материалов особой чистоты. С помощью ионообменных смол очищают от примесей металлов органические кислоты (лимонную, винную, молочную и т. д.), красители и другие органические вещества. [c.207]

    В аналитической химии, особенно в разделе количественного анализа, большую роль играет понятие грамм-эквивалента на основе грамм-эквивалентов определяют нормальности растворов. Относительной эквивалентной массой элемента (в виде атомов или атомных ионов) и химического соединения является выраженная в а. е. масса, которая реагирует в данных условиях с элементарным электрическим зарядом или количеством другого вещества, несущим такой фактический, или виртуальный заряд. Вещество взаимодействует непосредственно с электрическими зарядами в виде электронов в окислительно-восстановительных реакциях многих неорганических веществ (подробнее об этом см. далее) с другим веществом, несущим фактические заряды, когда происходят реакции между ионами с другим веществом, несущим виртуальный заряд, характеризуемый окислительным числом атома или группы атомов (радикала), в [c.35]

    Реакции других неорганических веществ [c.148]

    За счет реакций подобного рода или при их участии осуществляются, как известно, многие процессы в современной цветной и черной металлургии, в технологии силикатов и в производстве разного рода других неорганических веществ. [c.87]

    Реакции с другими неорганическими веществами [c.284]

    Другим общим методом изучения термохимических свойств неорганических веществ является метод, основанный на определении теплот реакций в растворах (обычно водных). Метод применим для определения энтальпий образования самых различных классов соединений кислот, оснований, солей и т. д. При этом АЯобр твердых неорганических соединений вычисляются из системы термохимических уравнений, включающей в себя АЯ растворения этих веществ, АЯ реакций с водой основных или кислотных окислов, АЯ реакций нейтрализации, реакций замещения, реакций между солевыми растворами и т. д. Определения АЯ реакций в водных растворах и в СССР, и за границей проводятся уже давно и очень широко. Много определений такого характера было сделано М. Бертло и Ю. Томсеном. В России еще в прошлом веке Н. И. Бекетов определил теплоты реакций многих неорганических веществ в водных растворах, а также многие теплоты растворения и вычислил теплоты образования из простых веществ ряда неорганических соединений. [c.319]


    Еще сохранилось деление каталитических реакций на органические и неорганические, хотя по всем другим признакам такое деление нецелесообразно, а в ряде случаев и затруднительно, так как во многих реакциях участвуют одновременно органические и неорганические вещества. [c.67]

    Очень сильное влияние на упорядочивающее воздействие поверхности глинистых минералов на воду оказывает состав обменных катионов. Это объясняется прежде всего прочностью связи катионов с поверхностью глинистой частицы, т. е. способностью их к диссоциации и участию в катионообменных реакциях. Степень поверхностной диссоциации (т. е. поверхностного растворения) глинистых минералов, замещенных одновалентными катионами, на один-два порядка выше степени диссоциации глин, обменный комплекс которых насыщен двухвалентными катионами. При прочих равных обстоятельствах степень поверхностной диссоциации зависит не только от плотности заряда обменного катиона, но и от взаимного влияния силовых полей поверхности частицы и катиона друг на друга при взаимодействии с водой. По мере увлажнения поверхности глин вокруг обменных катионов развиваются области с упорядоченными молекулами воды. Часть слабо связанных с поверхностью катионов удаляется от нее и может участвовать в трансляционном движении вместе с молекулами воды и растворенными в ней органическими и неорганическими веществами. Если в дисперсионной среде находятся крупные гидратированные катионы (Ма+, Mg2+), то они, вытеснив с поверхности глинистого минерала менее гидратированные катионы (К+, Са ), могут привести к увеличению гидратной оболочки глинистых частиц. В натриевом бентоните по мере возрастания содержания воды и уменьшения концентрацни суспензии отдельные слои глинистых частичек полностью диссоциируют. В бентоните, обменный комплекс которого насыщен магнием или кальцием, этого не произойдет, хотя ионный радиус этих катионов в гидратированном состоянии почти в два раза превышает радиус гидратированного натрия. Это, видимо, является следствием как изменения структуры воды и размеров гидратированных катионов вблизи поверхности в зависимости от их химического сродства, так и сжатия диффузной части двойного электрического слоя. [c.70]

    Второй химической схеной окисления углеводородов, получившей широкое распространение, явилась иерекисная схема. Она ведет свое происхождение от общей порекисной теории окислительных процессов, осуществляющихся под влиянием молекулярного кислорода. Эта теория возникла на основе исследования автоокислительных реакций и была сформулирована в 1897 г. С дповременно и независимо друг от друга А. Н. Бахом [17], изучавшим процессы медленного окисления в животных и растительных организмах, и Энглером [18], приложившим ее к окис- иению главным образом неорганических веществ. [c.29]

    Для неорганических веществ методом хроматографии в тонком слое нельзя ориентироваться на величины У / [20]. Значение Rf меняется в зависимости от влажности сорбционного слоя. Однако относительная высота подъема отдельных ионов, нанесенных рядом, — величина постоянная. С другой стороны, эта относительная высота подъема ионов при наличии в смеси нескольких ионов уже не будет постоянной величиной, поскольку ионы взаимно вытесняют друг друга. Поэтому при изучении хроматограмм следует определять ионы по известным реакциям обнаружения. [c.104]

    В качестве примера можно привести обобщение сведений о химических реакциях (см. схемы 7 и 8, с. 86 и 87). Основная цель заданий 5 и 6 на с. 81 — помочь вам провести сравнительный анализ изученных ранее типов химических реакций и получить обобщенные знания о них. Учебный материал о реакциях разложения, соединения, замещения, обмена, окислительно-восстановительных процессах, реакциях, протекающих по радикальному и ионному механизму и т. д., вы изучали в курсах неорганической и органической химии. При этом вы, может быть, и не задумались над тем, происходит ли процесс окисления-восстановления в конкретной реакции соединения или разложения, т. е. характерна ли данная реакция только для неорганических веществ или является общей как для неорганических, так и для органических веществ. Чтобы ответить на эти и другие вопросы, следует сравнить большое число конкретных химических явлений и выяснить, что в них общее и чем они отличаются друг ОТ друга, в результате такого сравнительного анализа вы и сможете обобщить знания о них. [c.3]

    Простейшими по составу катализаторами базисных реакций с учетом водной среды были, очевидно, гидратированные ионы, в частности аквокомплексы ионов переходных металлов. Их каталитическая активность могла увеличиваться при замене воды во внутренней сфере комплекса на другие неорганические лиганды. Особенно богатые возможности представила замена неорганических лигандов на органические. Это связано не только с большим разнообразием органических веществ, присутствующих во внешней среде, но и с большими возможностями взаимных превращений органических веществ. [c.16]


    Микрозонд можно использовать для разнообразных образцов, включая органические и неорганические вещества, полимеры, биообъекты. Например, изучались неоднородности, образующиеся при затвердевании цемента, и другие твердофазные реакции проводился анализ крови на холестерин и состава функционирующих клеток, а также пятен на пластинах тонкослойной хроматографии. Метод позволяет определять следы вредных для здоровья ароматических углеводородов в пикограммовых количествах. К преимуществам микрозондового КР-анализа следует отнести резкое уменьшение рассеяния света и флуоресценции по сравнению с обычным КР-экспери-ментом. [c.778]

    Этот пример показывает, что органическое вещество, взаимодействуя с другим органическим или неорганическим веществом, может вступать с ним в несколько различных реакций. В результате этих реакций могут быть получены совершенно различные продукты Подбирая соответствующим образом условия проведения реакции (температуру, давление, относительные количества взятых веществ, катализаторы и т. д.), можно заставить одну из этих реакций преобладать над другими. Так, например, при 170 °С этилсерная кислота разлагается с образованием этилена, а при 140 °С она реагирует с этиловым спиртом с образованием эфира (стр. 178). [c.88]

    От цинка перейдем к алюминию. Окрасить его несколько сложнее и операций больше, и не обойтись без электрического тока. Оксид и соли алюминия невзрачны, поэтому нужен другой способ окрашивания. Он известен это анодирование. Суть его в том, что через алюминиевую деталь, погруженную в электролит, пропускают ток при этом на поверхности ее образуется пленка оксида толщиной менее 0,1 мм. Так как алюминиевые детали в гальванической ванне служат анодом, процесс и называют анодированием. Оксидная пленка пронизана микроскопическими разветвленными порами, в которых хорошо удерживаются красители. Можно окрасить анодированную поверхность и органическими красителями, в том числе природными, но лучше все же неорганическими веществами. Обычно деталь обрабатывают поочередно в двух красящих растворах, и ярко окрашенные продукты реакции остаются в порах. [c.93]

    Таким же образом идет присоединение к двойной связи НВг, Н2504, Н2О и других неорганических веществ. Присоединение брома (обесцвечивание бромной воды) — качественная реакция на двойную связь. [c.40]

    Аналогично протекает присоединение и других неорганических веществ (Н2504, Н2О, Н0С1 и др.), а также некоторых органических молекул. После первоначального присоединения электрофиль-ной частицы во второй стадии реакции может присоединяться любой находящийся в растворе анион. Это было доказано при реакции этилена с бромом в водном растворе в присутствии анионов С1 и N07- Кроме Вг—СНг—СНг—Вг при этом получаются и следующие соединения Вг—СНг—СНг—С1, Вг—СНг—СНг—ОЫОг- [c.70]

    Описание ускорителей и процесса вулканизации нельзя не начать с открытия в 1839 г. Гудьиром процесса вулканизации каучука серой — подлинного начала резиновой промышленности. Однако применение одной серы малоэффективно, поскольку при этом для вулканизации требуется длительное время. Гудьир также описал использование карбоната свинца для ускорения реакции серы с каучуком. В последующие годы был предложен ряд других неорганических веществ, и вскоре вместо карбоната свинца в качестве первичного ускорителя стали использовать окись свинца. Хотя неорганические ускорители и увеличили эффективность термовулканизации серой, вулканизаты все же оставались неудовлетворительными (см. гл. 1). [c.159]

    Если среди упомянутых исследований сравнительно немного было содержащих опытный материал, то работы (5206, 5210—5212, 6190—6371] в основном посвящены экспериментальному изучению равновесия. Их иожно сгруппировать так исследование реакций различных неорганических веществ (6191—6202], диссоциации N204 (6203—6206], реакций с участием хлоридов (6207—6220] и других галогенидов (6221—6227], углеводородов (6228—6232], изомери зации их галогенпроизводных [6233—6238], изомеризации углеводородов (6239—6261], их гидрирования (6262— 6269], процессов с участием галогенпроизводных [6270—6281] и других органических соединений (1695, 6282—6294]. Примером перечисленных работ служит изучение равновесия реакции синтеза аммиака при высоких температурах и давлениях [6200] и равновесия дегидрохлорирования 2-хлорпропана (с попутным расчетом термодинамических свойств 2-хлорпропана) [6270]. Несколько особняком стоит исследование [6190], в котором изучали дроссельную ассоциацию паров некоторых неорганич. в-в при низких давлениях. [c.56]

    В газообразных промышленных выбросах вредные примеси можно разделить на две группы а) взвешенные частицы (аэрозоли) твердых веществ —пыль, дым жидкостей —туман и б) газообразные и парообразные вещества. К аэрозолям относятся взвешенные твердые частицы неорганического и органического происхождения, а также взвешенные частицы жидкости (тумана). Пыль —это дисперсная малоустойчивая система, содержащая больше крупных частиц, чем дымы и туманы. Счетная концентрация (число частиц в 1 см ) мала по сравнению с дымами и туманами. Неорганическая пыль в промышленных газовых выбросах образуется при горных разработках, переработке руд, металлов, минеральных солей и удобрений, строительных материалов, карбидов и других неорганических веществ. Про-мьппленная пыль органического происхождения —это, например, угольная, древесная, торфяная, сланцевая, сажа и др. К дымам относятся аэродисперсные системы с малой скоростью осаждения под действием силы тяжести. Дымы образуются при сжигании топлива и его деструктивной переработке, а также в результате химических реакций, например при взаимодействии аммиака и хлороводорода, [c.160]

    Выделение органической химии в самостоятельный раздел химической науки вызвано многими причинами. Во-первых, это связано с многочисленностью органических соединений (в настоящее время известно свыше трех миллионов органических Еси еств, а неорганических— около 150 тыс.). Вл дряя причина состоит в сложности и своеобразии органических веществ по сравнению с неорганическими. Например, их температуры плавления и кипения имеют более низкие значения они легко разрушаются при воздействии на них даже сравнительно невысоких температур (часто не превышающих 100°С), в то время как неорганические вещества свободно выдерживают очень высокие температуры. Большинство химических реакций с участием органических соединений протекает гораздо медленнее, чем ионные реакции неорганических веществ, что обусловлено природой основной химической связи в органических веществах — ковалентной связью. Углерод, входящий в состав органических веществ, обладает особой способностью соединяться не только с несколькими другими углеродными атомами, но и почти со всеми элементами периодической системы (кроме инертных газов). Следует подчеркнуть, что выход продукта в органической реакции, как правило, ниже, чем при реакции неорганических веществ. Кроме того, в области органической химии приходится сталкиваться с новыми понятиями и явлениями органический радикал, функциональная группа, изомерия и гомология, а также взаимное влияние атомов и атомных групп в молекуле. [c.5]

    Методами кислотно-основного титрования определяют концентрацию сильных и слабых кислот, сильных и слабых оснований, в том числе солей, которые рассматриваются как заряженные кислоты и основания. Возможно также определение веществ, не обладающих кислотно-основными свойствами, но вступающих в реакцию с кислотами или основаниями. Объектами анализа являются неорганические и органические оксиды и кислоты — азотная, серная, соляная, фтороводородная, фосфорная, уксусная, щавелевая, салициловая и другие, неорганические и органические основания — оксиды и гидроксиды щелочных и ще-лочно-земельных металлов, аммиак, амины, аминоспирты и т. д. Анализируются карбонаты, фосфаты, пирофосфаты, цианиды, сульфиды, бораты и соли многих других кислот. Содержание этих веществ обычно определяется методами прямого титрования, хотя в некоторых случаях используются методики обратного титрования и титрования по замещению. [c.212]

    Приведите примеры реакций из областей неорганической и органической химии, при которых а) из одного простого вещества образуется другое простое вещество б) из одного соединения образуется другое соединение в) из одного вещества образуется два или большее количество других веществ г) из нескольких веществ образуется одно соедгшение. [c.166]

    Классификация реакций. В неорганической химии широко используется классификация химических реакций по характеру взаимодействия реагирующих веществ, а точнее по процессам переноса электрона, электронных пар, протона и других атомномолекулярных частиц. По этим признакам они подразделяются на обменные реакции, окисления — восстановления и комплексообразования (реакции переноса электронных пар с образованием до-норно-акцепторных связей). [c.27]

    В заключение отметим, что рассмотренные вопросы составляют теоретический фундамент неорганической химии, на котором базируется изучение других ее разделов — химии элементов и их соединений, неорганического синтеза и методов исследования неорганических веществ. Между всеми разделами современной неорганической химии имеются глубокие внутренние связи, описываемые комплексом общих методов исследования структурного, термодинамического и кинетического. Применение только одного из них не дает полной картины процесса. Например, скорости реакции определяются не только кинетическими особенностями процесса, но и структурным соответствием между характеристиками, орбитальной симметрией реагентов и продуктов реакции (правило Р. Вудворта и Р. Гоффмана, 1965). Если соответствие имеется, реакции протекают легко, если соответствия нет —реакции протекают крайне медленно. [c.291]

    Дальнейшее развитие теории типов связано с именем Ш. Жерара. Он рассматривал органическое соединение как нечто целое, не состоящее из двух частей, но ввел одновременно понятие об остатках — атомных группах, соединяющихся друг с другом при реакциях обмена (эти реакции составляют большинство превращений, происходящих в химии). Эти остатки, по существу те же радикалы под новым названием, стали писать в типических формулах. Это не должно было обозначать, что соединения действительно построены из подобных остатков Ш. Жерар и его последователи стремились таким образом выразить лишь превращения seiu me, их реакции. В основу унитарной теории Жерара положено представление об определенных типах органических соединений, каждое из которых производится как бы от определенного родоначального неорганического вещества. Теорию эту чаще называют теорией типов. Раньше всего были развиты представления о типах водорода и хлороводорода. К типу водорода относили углеводороды — гомологи метана, а также альдегиды и кетоны. Формулы этих соединений изображались так  [c.10]

    Сопоставим свойства характерных представителей неорганических и органических веществ. Поваренная соль МаС1 — типичное неорганическое вещество — характеризуется высокой точкой плавления (800 °С), легко растворяется в воде, причем в растворе обнаруживаются ионы (это можно установить по электропроводности раствора). Другое соединение органическое — углеводород состава QoH42 (углеводороды примерно такого состава находятся в парафине) представляет собой вещество с низкой точкой плавления — около 37 °С, Оно нерастворимо в воде, не диссоциирует на ионы. Можно подумать, что все дело в составе обоих веществ, но это не так. Если, например, хлор, входящий в состав хлорида натрия, может быть открыт при помощи качественной реакции с нитратом серебра, то тот же хлор в составе органического вещества, например хлороформа СНС1з, не переходит непосредственно в ионное состояние, не реагирует с нитратом серебра. [c.77]

    К 30-м годам XIX в. накопилось много сведений (они поступали как из области неорганической, так и органической и физиологической химии) о существовании химических реакций, которые протекают необычным порядком. Особенно важной в этом отношении была работа Э. Митчерлиха, появившаяся в 1834 г. Он изучил реакцию образования эфира из спирта с помощью серной кислоты и нашел, что этот процесс важен не только потому, что в ходе его получается эфир, но главным образом потому, что он является примером своеобразного химического образования посредством контакта. Им было убедительно показано, что образование эфира обя )апо пе водоотнимающей функции серной кислоты, ибо добавление к снирту других водоотнимающих веществ пе приводило к образованию эфира. Оказалось, что серная кислота не мешает отгоняться тому количеству воды, которое получается при реакции следовательно, если серная кислота не может задерживать воду, то она не может и отгонять ее. Э. Митчерлих прио1ел к заключению, что в данном случае серная кислота вызывает химическое действие только своим присутствием, причем она совершенно пе связывается в течение реакции. Ученый объединил в одну группу явлений большинство известных к тому времени каталитических реакций образование и раз.ложеиие эфиров, гидролиз крахмала кислотами, химические реакции на металлах, брожение сахаров, разложение с помощью серной кислоты спирта на этилен II воду. [c.349]

    Современная неорганическая химия состоит из многих самостоятельных разделов, например химии комплексных соединений, химии неорганических полимеров, химии полупроводников, металлохимии, физико-химического анализа, химии редких металлов, радиохимии и т. п. Неорганическая химия давно перешагнула стадию описательной науки и в настоящее время переживает свое второе рождение в результате широкого привлечения квантовохимических методов, зонной модели энергетического спектра электронов, открытия валентнохимических соединений благородных газов, целенаправленного синтеза материалов с особыми физическими и химическими свойствами. На основе глубокого изучения зависимости между химическим строением и свойствами она успешно решает главную задачу создание новых неорганических веи еств с заданными свойствами. Неорганическая химия, как и любая естественная наука, руководствуется методологией диалектического материализма, следовательно, опирается на ленинскую теорию отражения От живого созерцания к абстрактному мышлению и от него к практике... . Живое созерцание осуществляется, как правило, при помощи эксперимента — наблюдения явлений в искусственно созданных условиях. Из экспериментальных методов важнейшим является метод химических реакций. Химические реакции — превращение одних веществ в другие путем изменения состава и химического строения. Во-первых, химические реакции дают возможность исследовать химические свойства вещества. Аналитическая химия использует химические реакции для установления качественного и количественного состава вещества. Кроме того, но химическим реакциям исследуемого вещества можно косвенно судить о его химическом строении. Прямые же методы установления химического строения в большинстве своем основаны на использовании физических явлений. Во-вторых, на основе химических реакций осуществляется неорганический синтез. За последнее время неорганический синтез достиг большого успеха, особенно в получении особочистых соединений в виде монокристаллов. Этому способствовало применение высоких температур и давлений, глубокого вакуума, внедрение бесконтейнерных способов синтеза и т. п. [c.7]

    Неорганическая химия давно перешагнула стадию описательной науки и в настоящее время переживает свое "второе рождение" в результате широкого привлечения квантово-химических методов, зонной модели энергетического спектра электронов, открытия валентно-химических соединений благородных газов, целенаправленного синтеза материалов с особыми физическими и химическими свойствами. На основе глубокого изучения зависимости между химическим строением и свойствами она успешно решает главную задачу — создание новых неорганических веществ с заданными свогютвами. Из экспериментальных методов химии важнейшим является метод химических реакций. Химические реакции — превращение одних веществ в другие путем изменения состава и химического ст(юения. Во-первых, химические реакции дают возможность исследовать химические свойства вещества. Кроме того, по химическим реакциям исследуемого вещества можно косвенно судить о его химическом строении. Прямые же методы установления химического строения в большинстве своем основаны на исполь зо-вании физических явлений. Во-вторых, на основе химических реакций осуществляется неорганический синтез. За последнее время неорганический синтез дос- [c.6]

    В подобных случаях, т. е. когда вместо ожидаемого целевого продукта из реакционной смеси выделяют в небольшом количестве некую неожиданную примесь, все это выбрасывают, а синтез повторяют при более тщательной очистке исходных веществ и более строгом соблюдении необходимых для основной реакции условиях, не тратя время на изучение побочного продукта. Если бы Педерсен поступил традиционно (для чего бьни некоторые основания, так как вьщеленный побочный продукт не обладал способностью комплексовать ион VO3), то он, вероятно, больше никогда не получил бы шанса отправиться в Стокгольм за Нобелевской премией, которая была присуждена ему (совместно с Дональдом Крамом и Жаном-Мари Леном) в 1987 г. за открьггие макроциклических полиэфиров типа 214 и другкх комплексонов. К счастью для Педерсена (и для мировой науки ) от его внимания не ускользнули необычные особенности поведения этого соединения. Так, сам 214 очень мало растворим в метаноле, но его растворимость резко возрастает в присутствии едкого натра. Дальнейшие эксперименты показали, что такой эффект независим от основности неорганического реагента и наблюдается для многих натриевых солей, так же как и для солей ряда других неорганических катионов [32Ь,с], Еще более интригующим был тот факт, что неорганические соли, практически не растворимые в неполярных органических растворителях, становятся заметно растворимыми в них в присутствии макроциклического полиэфира 214. Эти наблюдения побудили Педерсона выдвинуть блестящую гипотезу, объясняющую природу этих явлений. Он предположил, что наличие полости в центре макроциклической полиэфирной системы обусловливает способность таких соединений, и, в частности, 214, поглощать неорганический катион, размер которого соответствует размеру [c.466]

    Удалять воду из сферы реакции можно также и при помощи водо-отнимающих неорганических солей. Для этого употребляют безводный сульфат алюминия -беводный-хлористый кальций (например, для этерификации тридециловой кислоты ), безводный хлористый магний или же другое водоотнимающее вещество. [c.354]

    Сольволитические методы составляют самую большую группу зметодов синтеза сложных эфиров, поскольку все производные кислот так или иначе способны к взаимопревращениям. По уменьшению относительной реакционной способности эти производные располагаются в следующий ряд хлорангидрид > ангидрид кислоты > > сложный эфир > амид, нитрил > соль. Можно ожидать, что сложные эфиры, находящиеся в середине этого ряда, легко будут образовываться из хлорангидридов или ангидридов кислот, существовать в равновесии с другими эфирами (в условиях кислотного катализа) и с несколько большим трудом образовываться из амидов и солей. Получение эфиров из солей облегчается, если при этом происходит выделение или осаждение нерастворимой неорганической. соли. Короче говоря, сложные эфиры могут быть получены из кислот (реакция этерификации), а также из соединений пяти других приведенных выше типов. Кроме того, для синтеза сложных эфиров можно применять и другие исходные вещества, например ке-тены — соединения, родственные ангидридам, и 1,1,1-тригалоген-замещенные или -дигалогензамещенные простые эфиры, имеющие ту же степень окисления, что и сложные эфиры. Единственным в своем роде методом получения является рассмотренный пример Т1ир0лиза медных солеи (разд. А. 12), при котором происходит необычная ориентация. [c.282]

    С проблемой механизма восстановительной десульфуризации тесно связан вопрос об источнике водорода. Буго [5, 6] в своих первоначальных исследованиях показал, что никель Реиея, приготовленный как обычно, содержит большие количества водорода, который весьма эффективен при Бo тa loвлeнии различных органических и неорганических веществ. Другие авторы [7] высказали предположение, что именно этот связанный во-дврод принимает участие в реакциях десульфуризации. С дру- [c.380]


Смотреть страницы где упоминается термин Реакции других неорганических веществ: [c.55]    [c.79]    [c.73]    [c.147]    [c.407]    [c.137]    [c.104]    [c.280]    [c.5]    [c.127]    [c.108]   
Смотреть главы в:

Электрохимия углеродных материалов -> Реакции других неорганических веществ




ПОИСК





Смотрите так же термины и статьи:

Влияние температуры на теплоты образования неорганических соединений из простых веществ и на другие параметры этих реакций

Неорганические реакции

Температурная зависимость стандартного изменения энергии Гиббса для реакций образования неорганических соединений из простых веществ и для некоторых других реакций

неорганических веществ



© 2025 chem21.info Реклама на сайте