Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коксование низкотемпературное

    Самую многочисленную группу составляют химические процессы, из которых наиболее важными в технологии являются следующие процессы горение (сжигание жидкого, твердого и газообразного топлива с целью получения энергии, серы — для получения серной кислоты) пирогенные (коксование углей, пиролиз и крекинг нефтепродуктов) окислительно-восстановительные процессы (газификация твердых и жидких топлив, конверсия углеводородов) электрохимические (электролиз воды, растворов и расплавов солей, электрометаллургия, химические источники тока) электротермические (электровозгонка фосфора, получение карбида и цианамида кальция) плазмохимические (реакции в низкотемпературной плазме, включая окисление азота и пиролиз метана, получение ультрадисперсных порошкообразных продуктов) термическая диссоциация (получение извести, кальцинированной соды, глинозема и пигментов) обжиг и спекание (высокотемпературный синтез силикатов, получение цементного клинкера и керамических кислородсодержащих и бескислородных материалов со специальными функциями) гидрирование (синтез аммиака, метанола, гидрокрекинг и гидрогенизация жиров) комплексообразова-ние (разделение и рафинирование платиновых и драгоценных металлов, химическое обогащение руд, например путем хлорирующего или сульфатизирующего обжига для перевода металлов в летучие или способные к выщелачиванию водой соединения) химическое разложение сложных органических веществ (варка древесных отходов с растворами щелочей или бисульфита кальция с целью делигнизацми древесины в производстве целлюлозы) гидролиз (разложение целлюлозы из отходов сельскохозяйственного производства или деревообрабатывающей промышленности с по- [c.211]


    Пиролизом или сухой перегонкой называется процесс нагревания твердого топлива без доступа воздуха с целью получения из него твердых, жидких и газообразных продуктов различного назначения. В зависимости от условий процесса и природы вторичных продуктов различают низкотемпературный пиролиз или полукоксование и высокотемпературный пиролиз или коксование. По масштабам производства, объему и разнообразию производимой продукции процесс коксования занимает первое место среди всех процессов переработки твердого топлива. [c.160]

    Для выделения водорода из газов коксования и пиролиза нефти необходимы специальные установки низкотемпературного фракционирования, аналогичные тем, которые применяют при производстве кислорода. Этот метод выгоден, если одновременно выделяют также и другие газы (этилен, этан, ацетилен), которые затем можно перерабатывать. [c.215]

    В зависимости от конечной температуры нагрева угля различают низкотемпературное полукоксование (480—600°С), среднетемпературное коксование (600—900°С) и высокотемпературный пиролиз (выше 900 °С). Для промышленных процессов коксования угля, в которых обычно используется медлен- [c.67]

    Если все образующиеся в установках с коксованием в псевдоожиженном слое промежуточные дистилляты в дальнейшем направляются на переработку в ЗПГ, например на гидрогазификацию, то потребуется дополнительно водород, количество которого значительно превышает количество водорода, требуемого для десульфурации продуктов после низкотемпературной конверсии. Этот водород может быть получен из циркулирующего рабочего газа реактора, очищенного газа или посредством частичного окисления тяжелых углеводородов. Таким образом, в данной упрощенной технологической схеме объединяются в одну стадию переработка в ЗПГ сырой нефти совместно с коксом и промежуточными погонами, получаемыми в установках с коксованием в псевдоожиженном слое. Однако в этом случае требуются дополнительные расходы водорода, более сложное и громоздкое газифицирующее оборудование, значительно превышающее по массе оборудование, сэкономленное за счет исключения установки для газификации кокса. [c.147]

    ХИМИЧЕСКИЕ ПРОЦЕССЫ ПРИ НИЗКОТЕМПЕРАТУРНОМ КОКСОВАНИИ [c.77]

    В опытах по низкотемпературному коксованию угля в слоях, псевдоожиженных воздухом при 430 °С, измеряли расход кислорода. Дэвидсон 1 интерпретировал результаты исходя из скорости переноса кислорода от пузыря к непрерывной фазе и предполагая, что константа скорости реакции практически бесконечна, а пузырь не содержит твердых частиц. При горении в псевдоожиженном слое частицы угля могут быть распределены среди частиц зоны и не все они будут участвовать в реакции. В этом случае кажущаяся константа скорости получается значительно ниже и диффузия с поверхности частицы в этих условиях может оказаться лимитирующей стадией процесса. [c.312]


    Наиболее тяжелыми и вязкими дистиллятами среди исследуемых нефтепродуктов следует считать газойли процесса замедленного коксования с Ново-Уфимского НПЗ, которые отличаются при этом хорошими низкотемпературными свойствами (см. табл.2.6 и 2.7).Это обусловлено повышенным содержанием ароматических углеводородов (46,5% масс.) и смол (2,6% масс.) по сравнению с дистиллятами каталитического крекинга. Однако существенным недостатком газойлей замедленного коксования является самое высокое содержание в них сернистых соединений. В легком газойле коксования оно составляет 3,45 % масс., в тяжелом газойле - 3,77% против 1,1 и 1,9% в легком и тяжелом каталитическом газойлях соответственно. [c.55]

    Исследование тонкой структуры коксов при термообработке в области 500-2400 °С показало (рис. 1), что особенности структуры исходных коксов обуславливают существенное различие их структурной перестройки. К примеру, для игольчатого кокса характерно более плавное изменение межслоевого расстояния (d 2) в низкотемпературной области. Вследствие худшей упорядоченности в процессе коксования рядового кокса (3,4171 А) ниже, чем у игольчатого (3,457 А). Рядовой кокс только при 600 С достигает уровня межслоевого расстояния, характерного для исходного игольчатого кокса. Это запаздывание структурирования рядового кокса сохраняется и при дальнейшей термообработке до 1400°С. На предкристаллизационной и кристаллизационной стадиях коксы практически не различаются по значению Однако более высокий фактор формы, появление слабого отражения (202) свидетельствуют о наличии более совершенной структуры у графитированного игольчатого кокса. Такие же данные получены и по изменению Ц и Ц(рис. 1). [c.117]

    Каменноугольная смола — один из продуктов коксования каменного угля. Каменноугольная смола, полученная при высокотемпературном коксовании, содержит, как правило, большое количество ароматических углеводородов и гетероциклических азотистых оснований, а при низкотемпературном процессе коксования в ней появляются кислоты, парафины и нафтены. При перегонке сырой каменноугольной смолы выделяют несколько фракций легкое масло, отгоняющееся при температуре до 210°С, среднее, или карболовое, масло — при 210—240 °С, тяжелое, или креозотовое, масло —при 240—270 °С и антраценовое масло — при 270 °С и выше. [c.47]

    Процесс низкотемпературного разложения ОСК с применением коксового теплоносителя может осуществляться по различным схемам [5]. Основными направлениями являются разложение ОСК до 0 и кокса коксование ОСК после предварительной нейтрализации. [c.47]

    Полукоксование (низкотемпературное коксование) — это процесс пиролиза твердого топлива без доступа воздуха при температуре 573—873 К - Он служит для получения искусственного топлива (жидкого, газообразного, твердого) из ископаемых углей, торфа и сланцев, т. е. того твердого топлива, которое непригодно для коксования. Кроме полукокса, получают также смолу, надсмольную воду и газ, которые образуются в результате первичных реакций коксования (см. химизм коксования). [c.87]

    Процесс низкотемпературной карбонизации - далее автор для краткости использует термин "карбонизация" - (термополиконденсация, коксование, термолиз и т.д.) принято описывать схемой последовательных [c.127]

    Особенности структуры исходных коксов обусловливают существенные различия в поведении игольчатого и рядового коксов. Для игольчатого кокса характерно более плавное изменение межслоевого расстояния в низкотемпературной области (рис.1). Вследствие худшей упорядоченности в процессе коксования (доо  [c.108]

    Коксованием называется процесс переработки углей (угольных смесей) путем их нагрева без доступа воздуха до 900—1100°С с получением твердого углеродистого остатка, называемого коксом, а также летучих парогазовых продуктов, из которых конденсируются и извлекаются химические соединения и вещества. Как видно, коксование — процесс высокотемпературный, поэтому его иногда называют высокотемпературным коксованием в отличие от низкотемпературного коксования или полукоксования. [c.142]

    В зависимости от температуры реализации различают три вида пиролиза низкотемпературный, или полукоксование (не более 450-550°С) среднетемпературный, или среднетемпературное коксование (до 800 С) высокотемпературный, или коксование (900-1050°С). С повышением температуры снижается выход жидких и увеличивается — газообразных продуктов. Поэтому низкотемпературный пиролиз обычно проводят для получения первичной смолы — наиболее ценного источника жидкого топлива и различных химических продуктов. Основная задача высокотемпературного пиролиза — получение высококачественного горючего газа. Твердый остаток (пиролизный кокс) используют в качестве заменителя природных и синтетических углеродсодержащих материалов, сорбента при очистке питьевых и сточных вод и т.д. [c.18]


    Первую группу реакций, которые нужно рассмотреть в связи с реальными способами получения пиридинового цикла, составляют пирогенетические реакции, среди которых наиболее важной является сухая перегонка каменного угля. Действительный путь образования азотистых оснований при этом процессе неизвестен, и о нем имеются только догадки. Каменный уголь представляет собой материал сложного состава проичем состав его может изменяться в широких пределах. Так, антрацит может иметь до 88% углерода, тогда как битумный уголь, употребляемый чаще всего для получения побочных продуктов коксования, содержит около 75—80% углерода, 6% водорода, 3—5% кислорода, 5—7% золы и по 1—2% азота и серы. Углерод, равно как и другие элементы, не находится в свободном состоянии, а входит в состав сложного высокомолекулярного соединения. При 1000—1300° наступает разложение угля, в результате которого большая часть кислорода теряется в виде углекислого газа или окиси углерода, водород выделяется в свободном виде, азот выделяется либо в виде аммиака, либо в соединении с углеродом и водородом в виде азотистых оснований или веществ слабокислого характера—индола и карбазола. Образуются и другие соединения ароматического характера—бензол, толуол, тиофен и Др. При низкотемпературном коксовании (600—700°) образуется значительно больший процент алифатических и алициклических соединений, и это позволяет высказать предположение, что заключительной стадией образования веществ ароматического характера является дегидрирование. Во всяком случае, кажется очень правдоподобным, что пиридин и его гомологи образуются путем превращения [c.346]

    Производство высококалорийного газа для использования в качестве синтетического заменителя природного газа (СПГ) включает стадию каталитической конверсии смеси Н2 + СО (т. е. синтез-газа) в метан. Синтез-газ производится путем очистки газа, полученного парокислородной газификацией угля. Как показано в табл. 17-1, состав его определяется как свойствами угля, так и условиями газификации. Концентрация образующегося метана (от О до 26%) в основном зависит от степени низкотемпературного коксования — стадии, которая предшествует высокотемпературной газификации угля. [c.231]

    Для получения профилактических составов на основе легкого и тяжелого газойлей с установки Г 43-107 первоначально приготавливались базовые смеси из исследуемых дистиллятных фракций в соотношениях 1 1 и 1 2, в которые затем вводился ТНО - гудрон с АВТМ-9 или крекинг-остаток с ТК-3 (см. рис.2). Максимальная депрессия температуры застывания исследуемых композиций достигается при 1-5%-ном содержании нефтяного остатка (рис.1). Твердые парафиновые углеводороды в газойлях каталитического крекинга образуют в системе пространственный каркас, который вызывает застывание системы. Крекинг-остаток и гудрон нарушают агрегативную устойчивость парафиновых углеводородов дистиллятной фракции. Для сравнения на рис. 1 показано, что смеси на основе дизельного топлива или легкого газойля замедленного коксования низкотемпературными свойствами не обладают. Характеристики составов разрабатываемой профилактической смазки из нового вида нефтяного сырья приводятся в табл. 6. [c.12]

    В процессе низкотемпературного коксования при многих спосо-, бах, например при способе Люрги (Lurgi), применяют для обогрейа инертный газ, предварительно нагретый до 600° и проходящий затем через массу угля. [c.271]

    Первоначально гидрирование под высокими давлениями предназначалось для прямой переработки в жидкое топливо углей, а также смол высоко- и низкотемпературного коксования углей. И лишь впоследствии техника этого процесса была леренесена в переработку нефтяных мазутов. Мы увидим в дальнейшем, насколько еще осторожным следуер быть в приложении этого метода и какая еще нерешительность преобладает в практической оценке уже достигнутых результатов. Мы полагаем, что в изложении данного вопроса целесообразно следовать хронологическому порядку его развития, и потому последовательно рассмотрим  [c.343]

    Считается, что в хорошем летком масле промежуточные фракции между бензолом и толуолом, а также толуолом и ксилолом должны быть малы. Наоборот, высокое содержание их принимают за свидетельство в пользу недостаточно высокой температуры ароматизации или слийгком большой скорости введения нефти. Осуществляемая у нас ароматизация дает возможность получать, например, из керосина 5% бензола и 6% толуола, ценой весьма высоких затрат на топливо. Расход топлива на печах Пикеринга составляет 21% без рекуперации тепла и 18% с рекуперацией. В ретортах же Пинча расход топлива достигает 25% и выше. Следует думать, что при развитии методов парофазного крэкинга и прн широком строительстве соответственной промышленности, а также при развитии более совершенных методов ректификации, надобность в существовании специфической самодовлеющей промышленности по ароматизации нефти отпадает. Свертыванию ее кроме того будет способствовать и развитие промышленности высоко- и низкотемпературного коксования. [c.376]

    Низкотемпературное коксование В Англии особенно деяте льно развивалось в 1928 г., /причем ib 1929 г. было заретастрировано уже 42 (Компании с капиталом в 8 млн. фунтов стерлингов и с программой переработки 2 млн. т угля в год. [c.392]

    Затем при температуре 360—400° С в зависимости от свойств угля и скорости нагрева реакции термической деструкции начинают протекать более быстро и образуются смоляные вещества с различной молекулярной массой. Наиболее летучие вещества будут переходить в газовую фазу, образуя смолы низкотемпературного коксования. Менее летучие вещества образуют метапласт . Следует отметить, что определенную роль в торможении газовыделения играют явления сорбции. [c.92]

    Жидкпе побочные продукты высокотемпературного коксования углей — смола п бензол — уже давно пспользуются в ряде стран, наряду с нефтепродуктамн, в качестве котельного топлива, в дпзель-моторах и в двигателях внутреннего сгорания взрывного типа. Однако количество бензола, получающегося во всем миро, несмотря на колоссальные масштабы промышленности высокотемпературного коксования, составляет всего 1 % мировой добычи нефти. Что н е касается каменноугольной смолы, то она идет также на пропитку шпал и используется в красочной и в других отраслях химической промышленности, да н качество ее как топлива весьма невысоко. Выход низкотемпературной смолы полукоксования пз тех же сортов углей составляет уже 10 —12/о (вместо 2—3% смолы высокотемпературной) и качество смолы как моторного топлива здесь выше. Кроме того, для полукоксования предпочтительны именно угли, богатые летучими, т. е. непригодные для высокотемпературного коксования. [c.18]

    Различают два вида сухой перегонки ископаемых углей коксование - высокотемпературное (выше 1000 °С) разложение, основная цель - получение металлургического кокса, побочно используют все остальные продукты лолукоксование - низкотемпературное (до 550 С) разложение без доступа воздуха, основная цель - получение смолы. [c.128]

    Смолисто-асфальтеновые вещества нефтяных остатков обладают депрессорными свойствами, которые проявляются особенно в высокоароматизированных дистиллятах с небольшим содержанием твердых парафиновых углеводородов. Кроме того, они улучшают вяжущие свойства. Наибольшим депрессорньш эффектом к газой-левым фракциям обладает смесь дистиллятного и остаточного крекинг-остатков в соотношении 60 40 (табл.. 87). Депрессорные свойства гудрона высокосернистой нефти выражены слабее, чем крекинг-остатка. Базовые компоненты для низкотемпературных продуктов газойли коксования 190-350 °С, газойли каталитического крекинга 190-320 С. [c.131]

    Для концентрирования и выделения водорода из разбавленных газов применяют низкотемпературную конденсацию и фракционирование, адсорбционное разделение, абсорбционную промывку и разделение с помощью диффузии. В качестве сырья для указанных процессов используют газы риформинга, богатые водородом метано-водородную фракцию, получающуюся при пиролизе газы, получающиеся при дегидрировании углеводородов отдувочные газы процессов гидрирования, гидроочистки и гидродеаглкилирования газы коксования угля и др. [c.56]

    Если щелочная экстракция обеспечивает почти количественно извлечение фенолов из фракций каменноугольной смолы, выкк пающих до 230 °С, то обесфеноливание высококипящих фракци смолы и тем более смол низкотемпературного коксования, свя зано со значительными трудностями, вызываемыми высоким сс держанием в зтих фракциях смолистых веществ и азотисты оснований, большой вязкостью фракций, значительным растворс нием в фенолятах высококипящих фенолов нейтральных масе [c.93]

    В смолах, особенно низкотемпературного коксования, соде жится много тиофенолов (1—1,5% для коксохимических феноле заводов Донбасса [17] и 2—3% —в расчете на тиофенол —в ф олах первичных смол [18]). [c.93]


Смотреть страницы где упоминается термин Коксование низкотемпературное: [c.252]    [c.79]    [c.101]    [c.149]    [c.165]    [c.5]    [c.82]    [c.158]    [c.271]    [c.95]    [c.144]    [c.5]    [c.82]    [c.233]    [c.87]   
Основы технологии органических веществ (1959) -- [ c.0 ]

Основы технологии органических веществ (1959) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Коксование



© 2025 chem21.info Реклама на сайте