Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Очистка серной кислотой

    Бензольная составляющая может быть удалена очисткой серной кислотой. Парафи- новый углеводород удаляется в виде продуктов крекинга, для чего >фракцию подвергают пиролизу при 550—650° со временем пребывания в реакторе 10—20 сек. После повторной перегонки и очистки серной кислотой для удаления небольших количеств олефинов получают 96%-ный циклогексан. Очистка циклогексана может производиться также методами экстрактивной, вернее азеотронной перегонки. О путях промышленного решения этой задачи надежных данных нет. [c.100]


    К химическим методам принадлежат —гидроочистка и очистка серной кислотой, к физико-химическим методам — адсорбционные и абсорбционные способы очистки. [c.70]

    На ранних стадиях очистки масел (обработка глинами, кислотами, избирательными растворителями [155, 156, 157]) их антиокислительная стабильность увеличивается — вероятно, из масел удаляются легко окисляемые компоненты. Дальнейшая очистка, однако, может дать масла с уменьшенной антиокислительной стабильностью например, светлые масла, получающиеся после очень эффективной очистки серной кислотой, легко окисляются при более или менее низких температурах. Это наводит на мысль, что в результате подобной обработки из масел удаляются природные антиокислители. Среди них могут быть такие углеводороды, как алкил-нафталины, которые обладают способностью повышать природные предохранительные силы углеводородных смесей. [c.87]

    Примерно до 1930 г. очистка серной кислотой была почти универсальным методом очистки для всех видов нефтепродуктов, особенно для крекинг-бензинов, керосина и масляных дистиллятов. Крекинг-дистиллят обрабатывался серной кислотой для того, чтобы обеспечить его стабильность против окисления (которое ведет к образованию смол и порче цвета), а также, если нужно было, — для уменьшения содержания сернистых соединений. Однако сернокислотная очистка сопровождалась суш ественными потерями нефтепродуктов в результате полимеризации и растворения в кислоте. [c.223]

    При очистке серной кислотой достигается состояние равновесия, которое может быть смещено в ту или друг ю сторону. [c.184]

    С другой стороны, прямой расчет — производить очистку серной КИСЛОТОЙ отдельных однородных фракций, так как было отмечено, что при очистке фракции, имеющей широкие границы. кипения, т. е., иначе говоря, неоднородной, количество затраченной кислоты гораздо больше, чем в случае, если эту ш фракцию разбить на, ряд однородных фракций и очистку их производить для каждой отдельно. [c.190]

Рис. 10. 25. Зависимость окисляемости по ГОСТ 981—55 трансформаторного масла из эмбенского сырья от глубины его очистки серной кислотой Рис. 10. 25. <a href="/info/466753">Зависимость окисляемости</a> по ГОСТ 981—55 <a href="/info/122429">трансформаторного масла</a> из <a href="/info/418427">эмбенского</a> сырья от глубины его очистки серной кислотой
Рис. 10. 26. Зависимость окисляемости бакинского трансформаторного масла от глубины его очистки серной кислотой (обозначения те же, что на рис. 10. 25.) Рис. 10. 26. <a href="/info/466753">Зависимость окисляемости</a> бакинского <a href="/info/122429">трансформаторного масла</a> от глубины его очистки серной кислотой (обозначения те же, что на рис. 10. 25.)

    Очистка серной кислотой [c.208]

    Влияние различных факторов на процесс очистки серной кислотой. Степень очистки жидкого парафина серной кислотой зависит от количества кислоты, числа ступеней очистки, температуры очистки, концентрации кислоты, интенсивности перемешивания ее с парафином, а также способа отделения кислого гудрона. [c.210]

    ОЧИСТКА СЕРНОЙ КИСЛОТОЙ [c.186]

    Метод облагораживания нефтепродуктов путем очистки серной кислотой был весьма распространен. Однако он имел следующие недостатки большая длительность отстоя кислых гудронов, а также отработанных щелочей и промывных вод в стадии нейтрализации, в связи с чем (а также из-за образования относительно стойких эмульсий) требовалось иметь большие емкости для отстоя коррозия аппаратуры невозможность использования кислого гудрона. Поэтому очистка серной кислотой была заменена другими методами. [c.186]

    В работе [280] в лабораторных условиях очистке серной кислотой концентрацией 70—95% подвергали вакуумные газойли, полученные из сернистой туймазинской, а также из высокосернистых и высокосмолистых чекмагушской и арланской нефтей. Расход кислоты составлял от 0,5 до 10,0 объемн. %. Было установлено, что с увеличением расхода и концентрации кислоты выход очищенного продукта несколько уменьшается. Наиболее резко выход продукта изменяется при расходе кислоты до 1—2 объемн. %, а также при [c.186]

    Следовательно, при очистке серной кислотой даже худшего вида вакуумного газойля материальный баланс каталитического крекинга улучшается. Кроме того, улучшение соотношения выходов кокса и светлых нефтепродуктов делает такую очистку особенно эффективной на действующих установках, где производительность и глубина каталитического крекинга лимитируются коксовой нагрузкой регенераторов. Установлено, что улучшение материального баланса и качества продуктов крекинга достигается при очистке кислотой концентрацией 95% и расходе 2 объемн. %  [c.191]

    Как видно из табл. 53, эксплуатационные расходы по мере углубления очистки возрастают. Однако в связи с увеличением выхода бензина и легкого газойля себестоимость бензина каталитического крекинга очищенного сырья ниже, чем бензина, полученного из неочищенного вакуумного газойля. Из данных табл. 53 видно, что при очистке серной кислотой концентрацией 95—96% экономически более выгодно расходовать 2,5 вес. % кислоты на сырье. [c.209]

    Очистку серной кислотой проводят для удаления непредельных углеводородов, смолистых, азотистых и сернистых соединений. [c.265]

    Очистка серной кислотой (98—100%-ной) или [c.212]

    Неочищенный продукт в зависимости от пределов кипения (когазин I—140—180°, когазин II—180—250°) содержит различные количества веществ, поглощаемых раствором пятиокиси фосфора в серной кислоте. Эти примеси сильно мешают сульфохлор ироваиию. Поэтому их гидрированием под высоким давлением превращают в парафины или удаляют очисткой, например, концентрированной серной кислотой. При очистке серной кислотой, практикуемой в нефтяной промышленности, составные части, подлежащие удалению, теряются. При восстановлении же под высоким давлением они превращаются в парафиновые углеводороды, участвующие в сульфохлорировании. Речь идет здесь в первую очередь об олефинах, далее — о небольших количествах спиртов, альдегидов и кислот. [c.396]

    Очистка серной кислотой применяется для удаления ряда ненасыщенных углеводородов, смолистых, азотистых и сернистых-создинений. Очистка щелочью используется для удаления кислородных соединений, сероводорода, меркаптанов, а также для удаления серной кислоты и продуктов ее взаимодействия с углеводорб-дa ш. [c.10]

    Удаление прпмесей и загрязнений, в частности, путем отстоя оказывается особенно эффективным, если его проводить при температуре начала кристаллизации обрабатываемого продукта. В этом случае вместе с загрязнениями удаляется также и значительная часть выделившихся на них высокомолекулярных мелкокристаллических нарафинов. Положительно сказывается на кристаллической структуре парафинистых продуктов адсорбционная очистка и очистка серной кислотой, особенно если она проводится нри температуре начала кристаллизации парафина, содержащегося в обрабатываемом продукте. Но применение этих способов очистки только для улучшения кристаллической структуры вряд ли может быть оиравдано экономически. Но если обрабатываемый продукт необходимо очистить данными методами с какой-либо иной целью, то эту очистку целесообразно проводить перед денарафинизацией. [c.116]

    Первые два типа осадков и одновременно образующиеся кислоты связаны с окислением недоочищенных или переочищенных масел [84—86]. Переочистка нежелательна, так как она ведет к удалению естественных ингибиторов, содержащихся в масле. Глубокую очистку серной кислотой следует тоже ограничить, потому что в очищенном масле может происходить быстрое образование кислоты, хотя образование осадка может протекать и медленно. Это можно частично объяснить присутствием следов маслорастворимых сульфокислот или солей, остающихся в масле после нейтрализации или контактной очистки [87—89]. [c.566]


    В результате мы имели вначале ненужную трату сырья, денег и времени долгое время это оставалось незамеченным, но в конце концов стало очевидным, какой путь развития нефтяной иромышлен-нооги в дальнейшем является правильным. Так мало-по-малу мы стали на нормальный путь и кончили тем, с. чего должны быши бы начать, т. е. принялись за систематическое изучение явлений, лежа-шдх в основе наших промышленных операций. История развития крэкинга также является прекрасным примером аналогичного порядка ведцей. Он был приложен без разбора мало известных реакций к совокупности весьма различных продуктов. Не приходится удивляться, что прошли фды, прежде чем мы стали разбираться в этой запутанной проблеме. То же следует сказать и об очистке серной кислотой, которая, будучи использована в обычных условиях, часто приводийа к результатам, противоположным целевым заданиям. [c.10]

    По другому патенту Блэка "углево1дороды, ос >бенно крокннг-продукты, после очистки серной кислотой, обрабатываются едким на.тром крепостью до 50 % затем нагреваются до 200° под давлением выше [c.173]

    Вазелином называется смесь твердых и жидких углеводородов из высших фракций некоторых, особенно парафинистых, нефтей. Сырая, неочищенная фракция имеет обыкновенно темный прет, исчезающий после очистки серной кислотой, отбеливаюпщми порошками и т. п. Для выработки вазелина не все нефти одинаково пригодны. [c.341]

    Употребляемая для контактного метода земля должна быть значительно чище, чем для целей фильтрования. Для обработки бензина применяют тонкий порошок, получаемый декантацией, но этот метод ВБгходит из употребления ввиду получаемых здесь больших потерь. В большинстве алучаев употребляют спрессованную пыль. Последнюю всегда применяют также для целей фильтрования нефтей. Бензины и керосины после очистки серной кислотой в большинстве случаев подвергаются обработке контактным методом. Пам кажется, что более предпочтительцой является обработка методом фильтрования, так как, с одной стороны, эффективность адсорбции при нагревании понижается, а с другой — для перемешивания требуется известный расход энергии. [c.220]

    НИИ получения синтетической нефти из органических материалов. Особо значительными в этом отношении являются опыты К. Энглера и его учеников (1888 г.). Исходным материалом для своих опытов К. Энглер взял животные и растительные жиры. Для первого опыта был взят рыбий (сельдевый) жир. В перегонном аппарате К. Крэга при давлении в 10 аттг и при температуре 400°С было перегнано 492 кг рыбьего жира, в результате чего получились масло, горючие газы и вода, а также жир и разные кислоты. Масла было получено 299 кг (61%) уд. веса 0,8105, состоящего на 9/10 из углеводородов коричневого цвета с сильной зеленой флуоресценцией. После очистки серной кислотой и последующей нейтрализации масло было подвергнуто дробной разгонке. В его низших фракциях оказались главным образом предельные. углеводороды — от пентана до нонана включительно. Из фракций, кипящих выше 300° С, был выделен парафин с температурой плавления в 49—51° С. Кроме того, были получены смазочные масла, в состав которых входили олефины, нафтены и ароматические углеводороды, но в весьма небольших количествах. Продукт перегонки жиров под давлением по своему составу отличался от природных нефтей. К. Энглер дал ему название про- топеТролеум . Образование углистого остатка при этом не происходило, чему К. Энглер придавал особое значение, поскольку при перегонке растительных остатков (углей, торфа, древесины) в перегонном аппарате всегда образуется углистая масса. А так как в нефтяных месторождениях не наблюдается более или менее значительных скоплений угля, К. Энглер сделал вывод, что только животные жиры, без остатка превращающиеся в прото-петролиум, могли быть материнским веществом для нефти. Несколько позднее К. Энглер получил углеводороды из масел репейного, оливкового и коровьего и пчелиного воска [ ]. Штадлер получил аналогичные продукты при перегонке льняного семени. [c.311]

    По способу выделения из нефтей различают дистиллятные, остаточные и смешанные нефтяные масла. По методу обработки сырья масла делятся на выщелоченные, кислотно-щелочной очистки, кис-лотно-контактной очистки (серной кислотой и отбеливающей глиной), селективной очистки (избирательными растворителями), адсорбционной очистки и гидроочистки (на катализаторе в присутствии водорода). Выбор метода очистки сырья определяется его химическим составом, требованиями к качеству масла и экономической целесообразностью. [c.136]

    В 1885 г. А. Ф. Инчйком в г. Баку была сооружена первая в мире непрерывно действующая кубовая батарея, названная впоследствии нобелевской . Она состояла более чем из десяти горизонтальных кубов, расположенных террасами, так что нефть самотеком перетекала из куба в куб. Перегонный куб был снабжен жаровыми трубами и маточником для ввода в сырье водяного пара (до 20% на дистиллят). В кубах происходил отгон нефтяных фракций, пары которых поступали в конденсаторы и холодильники, где конденсировались и охлаждались. Кондесат самотеком попадал в сортировочное отделение, где смешивался с другими конденсатами, образуя товарные фракции, которые направлялись на очистку серной кислотой и щелочью от нежелательных компонентов (непредельных углеводородов, нафтеновых кислот и смол). Б последнем кубе поддерживалась температура сырья около 320° С. Для улавливания легчайших фракций и сообщения кубов с атмосферой служил скруббер, орошаемый холодной водой. Четкость погоноразделения была низкой. [c.294]

    В заключение укажем еще, только в виде ссылки, на два < пособа Харичтсова (68) для определения содержания асфальтовых веществ в нефти на основании цвета и уд. веса ее до и после очистки серной кислотой. Оба эти способа плохо разработаны, неточны и не привились на практике. [c.92]

    Собственно химическая обработка бензина начинается с очистки серной кислотой, действию которой подвергают еще грубые фракции бензина. Цель такой очистхси — удалить непредельные соединения, увеличиваюицге собой число индивидов, подлежащих разделению. [c.116]

    Узкие фракции керосина обладают довольно характерным запахом. Напр., фракции 185—190° пахнут ароматической сольвент-наф-той, 210—220°—нафталином и т. п. Резкий запах, свойственный керосину, принадлежит преимущественно высшим фракциям, начиная с 230—240°. Повидимому, он зависит от незначительных примесей, потому что тщательной очисткой серной кислоты он может быть если не уничтожен, то значительно осла]блен. [c.191]

    Лучший керосин получается из геологически древних нефтей или, по крайней мере, из таких нефтей легче получить продукт хороших качеств. Наоборот, смолистые молодые нефти, особенно крэкирован-ные продукты, дают продукт менее устойчивый. На цвет керосина в значительной мере влияет также и качество применяемой для очистки серной кислоты. Согласно исследованиям Шульца (151) селен, часто присутствующий в технической серной кислоте, вызывает устойчивую желтую окраску, не устранимую ни добавочной очисткюй чистой серной кислотой, ни щелочью. [c.213]

    Озокерит перерабатывается очисткой серной кислотой. В зависи мости от способа выделения из породы, нол уч енный сырец нока-> зывает различные свойства. Хвостовский (321) указывает, что ве-ш,ество озокерита, выделенное плавкой с водой, имело следуюпще константы уд. вес й = 0,8307, температура плавления — 57°, а при экстракции бензином уд. вес 0,8644, температура плавления 64,2° (озокерит из Сель-Рохо). [c.339]

    Отделившиеся жидкие парафины поступают 8 емкость (на рисунке не показана), откуда их подают на очистку серной кислотой и фуллеровой землей. Водный раствор кар1бамида из холодильника 9 направляют на фильтрование для отделения загрязнений, появившихся при разложении комплекса, охлаждают до 20 С и подают ва центрифугу 8 для отделения карбамида от водного раствора. Карбамид возвращают в реактор 3, а водный раствор -в реактор разложения 6. - [c.141]

    Иногда, кроме того, приходится удалять азотистые соединения и органнчес1лИе кислоты (в бензинах прямой гонки), а в бензинах, получаемых из смол, также и фенолы. Методы очисткн многочисленны п разнообразны. Однако метод очистки серной кислотой и щелочью, впервые принятый для очистки буроугольных и сланцевых смол еще в начале XIX в. и перенесенный затем в. 50-х годах XIX в. в нефтеперерабатывающую промышленность, до сих нор счне не вытеснен более совершенным или более дешевым. [c.302]

    Из исследовании по очистке серной кислотой бензинов не нефтяного происхождения отметим работы Хикса и Кинга [6], а также Руэмана [7]. [c.309]

    Ввиду относительно высокой окисляемости в сторону смолистых остатков вольтоловых масе.л, получаемых из такого богатого гидроароматическими углеводородами сырья, как первичные смолы, весьма интересную задачу представляет выяснение возможности исправления качества вольтоловых масел методом низкотемпературного гидрирования. Эта гидрогенизация, возможно, заменит обычную очистку серной кислотой или растворителями, сопряженную с высокими потерями масел. Сравнение масел из буроугольных смол (Нарына и Кок-Янгака) с исследованными И. Б. Рапопортом маслами из сапропелитов показало, что они, как и следовало ожидать, уступают последним, отличаясь более высокой окисляемостью. Следовательно, прп получении из этих масел то- [c.438]

    В зависимости от вязкости очищаемого масла и требоганиы, к нему предъявляемых, условия ( чистки меня от в следующих пределах температура очистки от 90 до 300 °С в зависимости от вязкости очищаемого продукта. Расход адсорбента (глины) зависит от вязкости масла, требуемой степени очистки и применяемых ранее методов очистки (серной кислотой или избирательными растворителями) и лежит в пределах от 5 до 20% от очищаемого продукта. После сернокислотной очистки расход земли больше, чем после очистки избирательными растворителями. Расход земли также увеличивается и при более смолистом сырье. Полученные после контактной очистки масла анализируют с определением цвета, коксуемости, температуры вспышки и, если это предусмотрено заданием, вязкости. o тaвJJЯют материалы ый баланс процесса. [c.230]


Смотреть страницы где упоминается термин Очистка серной кислотой: [c.26]    [c.78]    [c.339]    [c.409]    [c.47]    [c.166]    [c.309]    [c.309]    [c.396]   
Смотреть главы в:

Производство и применение жидких парафинов -> Очистка серной кислотой

Алюмосиликатные катализаторы и изменение их свойств при крекинге нефтепродуктов -> Очистка серной кислотой

Технология переработки нефти и газа. Ч.3 -> Очистка серной кислотой

Переработка нефти -> Очистка серной кислотой

Методы очистки сырья каталитического крекинга -> Очистка серной кислотой

Теория очистки нефтепродуктов -> Очистка серной кислотой

Химия нефти и искусственного жидкого топлива -> Очистка серной кислотой

Технология нефти Часть 3 -> Очистка серной кислотой

Технология переработки нефти и газа Часть 3 -> Очистка серной кислотой

Ацетилен, его свойства, получение и применение -> Очистка серной кислотой

Справочник коксохимика Т 3 -> Очистка серной кислотой


Технология переработки нефти и газа (1966) -- [ c.288 ]

Переработка нефти (1947) -- [ c.354 ]

Химия и технология основного органического и нефтехимического синтеза (1971) -- [ c.94 ]

Технология переработки нефти и газа Часть 3 (1967) -- [ c.81 , c.84 , c.88 ]

Производства ацетилена (1970) -- [ c.276 , c.277 ]

Теория технологических процессов основного органического и нефтехимического синтеза Издание 2 (1975) -- [ c.84 , c.86 ]




ПОИСК







© 2025 chem21.info Реклама на сайте