Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Резина температуростойкость

    Влияние радиуса катиона на предел температуростойкости (по сопротивлению разрыву) резин с ионными связями. [c.402]

    С помощью лейконата обеспечивается высокая прочность крепления, стойкость крепления к действию масел, растворителей, жидкого топлива, стойкость к действию горячей воды, кислот и щелочей. Крепление резины изоцианатным клеем по температуростойкости уступает креплению с помощью латуни. Добавление изоцианатов к клеям из ХНК значительно улучшает прочность крепления. [c.585]


    Для горячего крепления резины к металлам применяются также клеи из синтетических смол, например из феноло-форм-альдегидной смолы. Крепление посредством феноло-формальдегидных смол является более температуростойким, чем крепление посредством клея на основе ХНК, но последний обеспечивает более высокую стойкость к действию горячей воды. [c.584]

    При повыщенных температурах прочностные свойства резин падают из-за резкого уменьшения межмолекулярного взаимодействия. В процессе испытания на разрыв при 100 °С резины, вулканизованные гексаметилендиаминкарбаматом, уменьшают свою прочность более, чем в 2 раза (с 13,4 МПа до 5,2 МПа), а при 150°С сохраняют /з своей первоначальной прочности (3,6—4,0 МПа). Дальнейшее повышение температуры выше 150°С мало меняет сопротивление разрыву вследствие теплостойкости резин и незначительных происходящих в ней структурных изменений. Повышение содержания наполнителя, до 30—35 ч. (масс.), несколько улучшает температуростойкость резин. [c.519]

    Под теплостойкостью каучука н резин следует понимать их устойчивость к длительному воздействию повышенных температур, вызывающему, как правило, необратимые изменения, свойств вулканизатов. Температуростойкость характеризует способность их сохранять физико-механические свойства при повышенной температуре. [c.71]

    Введение в резину наполнителей не повышает предела прочности при растяжении, но резко повышает модули, сопротивление истиранию и раздиру, озоностойкость, температуростойкость и остаточное удлинение и уменьшает относительное удлинение. [c.109]

    По температуростойкости резины из бутилкаучука уступают резинам из других каучуков, но по сопротивлению тепловому старению превосходят их. Недостатком вулканизатов бутилкаучука является низкая эластичность по отскоку, но при 100 °С по эла- [c.109]

    При применении промежуточного эбонитового слоя обеспечивается наибольшая прочность крепления резины к металлу, но этот способ крепления обладает рядом существенных недостатков 1) значительная длительность вулканизации 2) хрупкость промежуточного эбонитового слоя и поэтому чувствительность к ударам н вибрациям 3) низкая температуростойкость эбонита. [c.581]

    Бутилкаучук благодаря своим особым свойствам — газонепроницаемости, высокой озоно- и химической стойкости, тепло-и температуростойкости — нашел широкое применение в различных отраслях народного хозяйства. В шинной промышленности бутилкаучук применяется вместо НК для изготовления автомобильных камер. Ездовые камеры с использованием бутилкаучука в 8—10 раз превосходят по воздухонепроницаемости камеры из НК. Для камерных резин применяется бутилкаучук с высокой вязкостью и средней непредельностью. Диафрагмы форматоров-вулканизаторов на шинных заводах в основном изготовляются из бутилкаучука. Бутилкаучук находит широкое применение в резинотехнической промышленности при изготовлении транспортерных лент и паропроводных шлангов, работающих в тяжелых температурных условиях. Он также широко применяется для изготовления резиновых изделий медицинского и пищевого назначения. [c.203]


    Метод крепления резины посредством латунирования является наиболее распространенным методом при изготовлении резинометаллических деталей небольшого размера. Он обеспечивает высокую прочность и температуростойкость крепления резины к металлу, хорошее сопротивление его ударам и вибрациям. [c.582]

    Резины для диафрагм и варочных камер должны обладать повышенными прочностью при растяжении, сопротивлением многократным деформациям, а также стойкостью к тепловому старению и температуростойкостью. Поэтому смеси для этих резин готовят на основе бутилкаучука (90 масс, ч.) и СКЭПТ-50 (10 масс. ч.). СКЭПТ способствует повышению срока службы диафрагм в 1,5 раза. Чтобы повысить стойкость к тепловому старению резин для диафрагм и варочных камер, применяют бутилкаучук с большим содержанием непредельных связей, чем в бутилкаучуке для ездовых камер. [c.64]

    Для оценки зависимости механических свойств резин от температуры важно быстро довести образцы до температуры испытания, не изменяя их исходных свойств. Полученные при этом показатели теплостойкости характеризуют температуростойкость резин. Их сопоставляют с аналогичными показателями, полученными при температуре (23 2) С, и выражают коэффициентами теплостойкости при заданной температуре для данного физико-механического показателя. В общем виде коэффициент рассчитывают по формуле  [c.169]

    Добавка СКД-ЛС 1,2 в смесь СКИ-З+БСК позволяет существенно улучшить коэффициент температуростойкости, сопротивление тепловому старению, многократному растяжению и разрастанию трещин в шинных резинах. Улучшаются сцепные характеристики протектора. [c.59]

    Как видно из приведенных данных, введение диафена ФП в резиновую смесь в виде молекулярных комплексов позволяет существенно улучшить сопротивление резин к тепловому старению и коэффициент температуростойкости при сохранении физико-механических свойств на уровне контрольной резины. Кроме того, большие молярные объемы молекул комплексов приведут к замедлению миграции диафена ФП из резин. Эти данные позволяют рекомендовать молекулярные комплексы ФП-СтЦ для широкого внедрения в шинную промышленность России. [c.210]

    Эффективность добавок как антиоксидантов оценивалась по константе скорости химической релаксации напряжения вулканизатов на воздухе при деформации 60% и температуре 130°С, по коэффициентам температуростойкости и старения при 100°С. Заш,ита резин от озонного старения определялась по константе скорости роста треш ин в озоне (концентрация озона 5-10 % об., статическая деформация 20%). [c.322]

    Использование комбинированной вулканизующей системы (оксиды металлов и органические перекиси) наряду с уменьшением остаточного сжатия приводит в случае ненаполненных вулканизатов к значительному снижению прочностных свойств и, в частности, сопротивления раздиру. В саженаполненных резинах этого ухудшения не наблюдается, но повышенная температуростойкость и пониженное накопление остаточной деформации сохраняются. [c.165]

    Как следует из полученных данных, прочность в начальной стадии вулканизации быстро увеличивается, достигая уже к 7-й минуте своего максимального значения (рис. 1,а). При дальнейшем прогреве прочность несколько снижается. Еще более четко проявляется максимум при 100 °С, причем величина прочности достигает 22 МПа, становясь соизмеримой с температуростойкостью резин на основе НК и СКИ-3 (рис. 1,6). [c.121]

    В настоящее время широко применяется для защиты подземных трубопроводов битумно-резиновая мастика. В качестве наполнителя для ее приготовления используется порошок резины, полученный дроблением старых автопокрышек. В отличие от минеральных наполнителей при введении резиновой крошки в расплавленный битум наблюдается химическое взаимодействие между каучуковыми высокомолекулярными веществами и масляными фракциями битума. При этом повышается эластичность, температуростойкость и долговечность и снижается влаго-емкость. [c.113]

    В последние годы начал внедряться новый наполнитель — измельченная резина, полученная дроблением старых автопокрышек. В отличие от минеральных наполнителей при введении резиновой крошки наблюдается физико-химическое взаимодействие между битумом и каучуковым высокомолекулярным веществом. При этом повышаются эластичность, температуростойкость, долговечность, а влагоемкость снижается. [c.119]

    Резина из дивинил-стирольного карбоксилатного каучука СКС-30-1 обладает очень хорошим сопротивлением тепловому старению и высоким сопротивлением разрастанию трещин при многократном изгибе. Низкая температуростойкость вулканизатов заметно улучшается в процессе старения. Вулканизаты СКС-30-1 отличаются повышенной износостойкостью . [c.109]

    Трубы из ситалла диаметром 50 мм с температуростойкостью до 250° С серийно выпускаются промышленностью. Они комплектуются фасонными деталями — отводами и тройниками. Трубы бывают с буртами и без буртов. Первым следует отдать предпочтение, так как их легче соединять. Способ соединения такой же, как у стеклянных труб. Некоторые типы соединений показаны на рис. 3.3. Из рис. 3.3. следует, что химическая и термическая стойкость собранного ситаллового трубопровода будет определяться не стойкостью ситалла, которая, как это видно из табл. 3.5, очень высока, а стойкостью прокладочно-уплотнительных материалов, т. е. фторопласта, паронита, резины и т. д. [c.96]


    Технологические свойства каучука и наполненных резиновых смесей таковы, что они могут перерабатываться в полуфабрикаты и изделия на типовом оборудовании заводов резиновой промышленности. Из многих наполнителей, которые воспринимает БК, в резинах, от которых требуется кислото- и щелочестойкость, чаще всего применяют технический углерод. Это позволяет получать износостойкие резины с наиболее высокой тепло- и температуростойкостью. Озоностойкость несколько [c.42]

    Испытание каучука БНЭФ-26-7И в сравнении с СКН-26М показало [7, 9], что резины на основе БНЭФ (табл. 3) имеют более высокие твердость, напряжение при удлинении 300%, сопротивление раздиру, разрастанию трещин, старению и прочностные показатели при 150 °С, а также озоностойкость. Коэффициент эластического восстановления при —25°С, температуростойкость, сопротивление раздиру, истиранию и эластичность по отскоку зависят от используемой системы ковалентной вулканизации и могут быть существенно улучшены при введении в нее диметилглиоксима. [c.410]

    По данным таблицы 2.24 необходимо отметить, что несмотря на меньшую исходную вязкость по Муни каучука СКДИ стандартная резиновая смесь на его основе имеет меньшую пластичность и большую вязкость при 100 °С, чем смесь на основе СКД. В то же время для нее при 143 °С значения крутящих моментов ниже, а сопротивление подвулканизации выше, что делает СКДИ более предпочтительным, чем СКД, даже при более низкой условной прочности вулканизатов. Резины на осно-ве,СКДИ характеризуются большим коэффициентом температуростойкости, но несколько меньшим сопротивлением тепловому старению по сравнению с резиной на основе СКД. [c.52]

    При полной замене сульфенамидных ускорителей дисульфалем МГ в резиновых смесях протекторного типа, содержащих значительное количество акгивного технического углерода, наблюдается снижение сопротивления П0двужанизащ1и, хотя по комплексу физико-механических свойств вулканизаты с дисульфалем МГ не уступают контрольным, а по температуростойкости, стойкости к тепловому старению превосходят серийные резины. [c.168]

    Как видно из приведенных данных, опьпные резины отличаются от контрольной более высокими значениями коэффициентов температуростойкости и теплового старения. Кроме того, содержание - ЫН групп, способных образовьюать канцерогенные нитрозо-амины, на 1 тонну резиновой смеси уменьшается в 2,38-3,37 раза. [c.178]

    Как видно, введение ЦБС в виде предварительно полученной маточной смеси с каучуком СКБ-50р пр 1водит к повышению температуростойкости, теплостойкости и усгалосгаой выносливосш резин, что обусловлено улучшением распределения ускорителя в резиновой смеси и образованием более регулярных поперечных связей в объеме резины. [c.89]

    Вулканизаты с меньшим содержанием гуанитиофоса (0,8-г-1,2 мае. ч.) характеризуются более низкой плотностью поперечных связей, о чем свидетельствуют низкие значения зоо. Однако такие резины имеют повышенную усталостнук выносливость, при этом сопротивление тепловому старению к температуростойкость Нс1Ходятся на уровне контрольной резины и выше. Такие резины представляют интерес при разра- [c.260]

    Результаты испытаний свидетельствуют о преимуществе резин, вулканизованных смолой на основе алкилфенолдисульфида перед серными вулканизатами по прочностным и усталостным свойствам, температуростойкости, сопротивлению тепловому старению и износостойкости При вулканизации серосодержащей смолой наблюдается высокая прочность связи протектора с серийной бре-керной резиной, вулканизуемой серой Резины, вулканизованные смолами, почти не меняют свойств в процессе эксплуатации готового изделия. [c.173]

    Как известно, прочность при повышенных температурах (температуростойкость) является одним, из факторов, опре-деляюш их динамическую выносливость резин, особенно в условиях повышенного теплонакопления. В свою очередь, температуростойкость резин зависит от регулярности структуры изопреновых каучуков и их способности кристаллизоваться.. При этом, согласно имеющимся данным, ненаполненные вулканизаты менее регулярных литийизопреновых каучуков заметно уступают по этому показателю резинам из СКИ-3 и [c.120]

    На температуростойкость резин ДФФД оказывает противоположное влияние—-прочность при 100 °С возрастает в присутствии этой добавки, достигая 25—27 МПа. При этом наблюдается также довольно четко выраженный максимум, однако величина прочности после максимума снижается более медленно и зависит от содержания добавки в смеси. [c.122]

    Вулканизующие системы. Основной вулканизующий агент для И. к.— сера (1—3 мае. ч.). Ускорителями вулканизации служат соединения класса тиазолов, сульфенамидов, тиурамсульфидов, гуанидинов, а также продукты конденсации альдегидов с аминами. Количество ускорителей в смесях из И. к. примерно на 10% больше, чем в смесях из натурального каучука. При использовании сульфенамидов получают смеси йз И. к., стойкие к подвулканизации. Резины из таких смесей характеризуются высокими прочностью при растяжении, эластичностью и динамич. свойствами. При введении в смеси из И. к. нек-рых легкоплавких соединений с амидогруппами (напр., 8-капролактама), заменяющих содержащиеся в натуральном каучуке белковые вещества, достигается повышение температуростойкости резин из И. к. При использовании в качестве вулканизующего агента тиурама (3 мае. ч.) или 2,0—2,5 мае. ч. тиурама и небольших количеств серы (0,3—0,5 мае. ч.) получают вулканизаты, обладающие более высокой, чем серные, теплостойкостью и малой остаточной деформацией. [c.410]

    Свойства вулканизатов. Основные физико-механич. свойства резин из К. к. прочность при растяжении 7—9 Мн/м (70—90 кгс/см ) [для особопрочных резин > 10 Мн/м (>100 кгс/см )], относительное удлинение 400—600%, остаточное удлинение < 10%. Теплостойкость (продолжительность эксплуатации резин при определенной темп-ре до падения их относительного удлинения ниже 50%) характеризуется след, данными 150 С — до 30 лет 200 °С — до 6 лет 260 до 2 лет 315 °С — до 2 мес 370 °С — до 1 нед 425 С — до 2 ч 480 °С — до 10 мин. Температуростойкость резин (прочность при растяжении в Мн/м , определенная при различных темп-рах) следующая (5 (20 °С), 5,5 (50 °С), 5 (100 °С), 4 (200 °С), 3,5 (250 °С). [c.574]

    Основные преимущества резин из С. н. к. перед резинами на основе их аналогов — высокие температуро-стойкость, сопротивление тепловому старению и многократным деформациям (см. таблицу). Эти показатели тем выше, чем больше содержание в С. н. к. сложноэфирных групп. Резины из БНЭФ несколько превосходят резины из обычных бутадиен-нитрильных каучуков по сопротивлению раздиру и стойкости в агрессивных средах — нефтяных маслах, смеси бензина с бензолом и др. Модуль и твердость резин из БНЭФ выше, а относительное удлинение ниже, чем у резин из бутадиен-нитрильных каучуков. Для резин из каучуков БСЭФ характерны более высокие температуростойкость, сопротивление тепловому старению и многократным деформациям, чем для резин из обычных бутадиен-стирольных каучуков. [c.210]

    Для l,4-i(и -пoлибyтaдиeпa с (1-ш) 0,97 при растяжении Гпл возрастает до 20—30 °С. Это значит, что такой эластомер при растяжениях, близких к разрывным, может кристаллизоваться при комнатной температуре . Даже небольшие отклонения в величинах Гйл и а [см. уравнение (41)] приводят к резкой разнице в прочности резин на основе 1,4-г с-полибутадиена при комнатной температуре. Тот факт, что температура плавления для резин на основе 1,4-г ис-полибутадиена даже при весьма высоких (1-пу) не может быть выше 30 °С, приводит к весьма низкой их температуростойкости в отличие от резин на основе НК. [c.156]

    Бутилкаучук представляет собой сополимер изобутилена с небольшим количеством изопрена. Температура стеклования резин на его основе составляет около —70 °С. Густота сетки для резин на основе бутилкау-чука определяется его непредельностью, т. е. содержанием изопреновых звеньев (ш ), которое колеблется от 0,9 до 4% в зависимости от типа каучука. Основная особенность кристаллизации резин на основе бутилкаучука — чрезвычайно сильное влияние на нее напряжения, приводящее к тому, что при растяжении кристаллизация наблюдается при комнатной и более высоких температур ах > и сопровождается сильным выделением тепла Поэтому прочность и температуростойкость резин на основе бутилкаучука определяются их кристаллизацией, несмотря на то что скорость кристаллизации ненапряженных резин даже в оптимальных условиях очень мала. Долгое время ошибочно считали, что бутилкаучук вообще не способен кристаллизоваться в ненапряженном состоянии. [c.157]


Смотреть страницы где упоминается термин Резина температуростойкость: [c.401]    [c.156]    [c.37]    [c.255]    [c.182]    [c.210]    [c.477]    [c.577]    [c.474]   
Механические испытания каучука и резины (1964) -- [ c.181 ]




ПОИСК





Смотрите так же термины и статьи:

Температуростойкость



© 2025 chem21.info Реклама на сайте