Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аланин образование аспартата

    Нет азот аланина может посредством трансаминирования переноситься на оксалоацетат с образованием аспартата. [c.721]

    В процессе кратковременного фотосинтеза С из углекислого газа включается в несколько аминокислот глицин, серин, аланин и аспартат. При несколько более длительном фотосинтезе радиоактивный углерод обнаруживается еще в одной аминокислоте,—глута-мате. Однако есть все основания считать, что эта аминокислота образуется вне хлоропластов в результате постфотосинтетических превращений углерода, связанных с функционированием цикла Кребса. Тем не менее, глутамату придается большое значение в реакциях фотосинтетического образования аминокислот. Дело в том, что глутамат может выступать в роли донора аминогрупп в реакциях переаминирования, приводящих к образованию аспартата, серина, глицина и, быть может, аланина. Это доказывают опыты (Бассем, Кирк, 1963), в которых использовались одновременно радиоактивные изотопы углерода и стабильный изотоп азота Результаты этих опытов представлены на фиг. 114 и фиг. 115. Оказалось что включается быстрее в состав глутамата, чем в аспартат и аланин, а С — наоборот — позже в глутамат. Характер изменения во времени содержания Н в этих аминокислотах позволяет сделать вывод [c.243]


    Микроорганизмы используют АТР и сильный восстановитель для превращения N2 в ЫН4 Затем соли аммония используют-ся высшими организмами для синтеза аминокислот, нуклеотидов и других молекул. Основными соединениями ( пунктами входа ), в составе которых N114 вводится в промежуточный метаболизм, являются глутамин, глутамат и карбамоилфосфат. Организм человека способен синтезировать лишь половину основного набора двадцати аминокислот. Эти аминокислоты называются заменимыми в отличие от незаменимых, которые обязательно должны поступать с пищей. Пути биосинтеза заменимых аминокислот очень просты. Глутамат-дегидрогеназа катализирует восстановительное аминирование а-оксоглутарата с образованием глутамата. Аланин и аспартат синтезируются путем трансаминирования пирувата и оксалоацетата соответственно. Глутамин синтезируется из N14 и глутамата, сходным образом образуется и аспарагин. Пролин синтезируется из глутамата. Серин, образующийся из 3-фосфоглицерата,- предшественник глицина и цистеина. Тирозин синтезируется путем гидроксилирования незаменимой аминокислоты фенилаланина. Пути биосинтеза незаменимых аминокислот гораздо сложнее, чем заменимых. Эти пути в большинстве своем регулируются путем ингибирования по типу обратной связи, когда решающая реакция аллостерически инги- [c.252]

    Одной из характерных особенностей таких полипептидных монослоев является их высокий поверхностный момент, значительно превосходящий поверхностный момент полипептидов с неполярными боковыми цепями, например поли-В, Ь-аланина. Полярные связи в боковых цепях влияют на поверхностный момент так же, как и связи, расположенные в главной цепи. Важно подчеркнуть, что поверхностная вязкость поли-Р-бензпл-Ь-аспартата проявляется только при высоких поверхностных давлениях. Вообще поверхностная вязкость мопослоев в конденсированном состоянии оказывается высокой даже при тех площадях, при которых поверхностное давление все еще остается достаточно низким напротив, для монослоя, находящегося в растянутом состоянии, поверхностная вязкость обнаруживается лишь при площадях, при которых поверхностное давление становится достаточно высоким. Другими словами, поверхностная вязкость конденсированной пленки действительно связана с самим монослоем, тогда как поверхностная вязкость растянутой пленки, вероятно, характеризует сильно сжатый монослой. Такое характерное различие в вязкостных св011ствах конденсированных и растянутых пленок наблюдается не только у сополимерных полипептидов, о которых говорилось выше, но и у всех других полимеров. Хотя поверхностная вязкость поли-Р-бензил-Ь-аспартата дает картину, характерную для пленок растянутого типа, кривая зависимости давление — площадь соответствует пленке конденсированного типа. Более того, поверхностная вязкость плепок этого полипептида характеризуется положительным температурным коэффициентом, что отличает их от других пленок растянутого типа, которые имеют обычно отрицательный температурный коэффициент. Различия между пленками ноли-у-бензил-Ь-глутамата и поли-Р-бензил-Ь-аспартата и особенно аномальные свойства последнего обусловлены расположением полярных групп в боковых цепях. Карбонильные группы боковых цепей могут располагаться вне водной поверхности, однако в случае поли- -бензил-Ь-аспартата они соприкасаются с водной поверхностью и вряд ли отличаются от карбонильных групп главной цепи. В соответствии с этим возможность образования водородных связей между карбонильной группой боковой цепи и аминогруппой главной цепи делает конфигурацию этого полимера менее устойчивой. Это может быть причиной [c.306]


    Аспартат-р-декарбоксилаза С1, wel hii отличается от других декарбоксилаз еще и тем, что она активируется не только пиридоксальфосфатом, но и очень малыми количествами а-кетокислот. Это явление нельзя отнести за счет декарбоксилирования щавелевоуксусной кислоты, возникающей в результате переаминирования между добавленной а-кетокислотой и аспарагиновой кислотой, поскольку а-аланин, образующийся при ферментативном карбоксилировании аспарагиновой кислоты в присутствии меченой пировиноградной кислоты, не содержит изотопной метки. По всей вероятности, активирующее действие добавленной а-кетокислоты связано с образованием пиридоксальфосфата в результате реакции переаминирования между а-кетокислотой и пиридоксаминфосфатом, присутствующим в ферментном препарате. [c.208]

    Для того чтобы выявить реакции переаминирования, обычно выясняют, служит ли в них а-кетоглутарат в качестве акцептора аминогруппы от целого ряда различных аминокислот иначе говоря, сначала обнаруживают реакции, обратные тем, при которых синтезу той или иной аминокислоты предшествует образование глутамата в ходе восстановительного аминирования. Использование именно этого метода обусловлено тем, что, в то время как все 20 протеиногенных аминокислот имеются в продаже, из кетокислот можно приобрести лишь некоторые. Однако при всем том можно сделать вывод о важной роли переаминирования в синтезе аминокислот, ибо показано, что лучше всего изученные реакции переаминирования обратимы, другие же реакции переаминирования считаются обратимыми. Показано, что в случае аспартат-глутамат- и аланин-глутамат — аминотрансфераз из зародышей пшеницы равновесие реакций сдвинуто в сторону синтеза соответственно аспартата и аланина [16] Из сравнения с бактериальными системами биосинтеза аминокислот [67] явствует, что у высших растений переаминирование, возможно, является последней ступенью в биосинтезе глицина, аланина, валина, лейцина, изолейцина, аспартата, фенилаланина, тирозина, а также, возможно, серина. Если такие реакции переаминирования действительно происходят in vivo, то следует предполагать, что соответствующие а-кетокислотные аналоги аминокислот должны присутствовать в растительных клетках [c.212]

    Сопряжение между катаболизмом углеводов и аминокислот обеспечивается в основном образованием окислительно-восстановительной пары между фумаратредуктазой и а-кето-глутаратдегидрогеназой. Так как на 1 моль глюкозо-6-фосфата образуется 2 моля ФЕП, для поддержания окислительно-восстановительного баланса во В1>емя непрерывного образования аланина, сукцината и пропиоката — трех главных конечных продуктов анаэробного обмена — необходима одновременная мобилизация 2 молей аспартата и 2 молей глутамата Выход энергии 8 молей АТФ иа 1 моль глюкозо-6-фосфата 4- 2 моля аспартата + 2 моля глутамата. [c.67]

    Показано, что если создать в лаборатории условия, имитирующие условия, которые существовали на первобытной Земле, то образуется ряд более или менее простых биохимических соединений . Полагают (хотя это, по-видимому, окончательно не доказано), что кислород в первичной атмосфере отсутствовал и она обладала восстановительными свойствами, поскольку состояла из смеси водорода и разных его соединений, из которых с точки зрения возникновения жизни особое значение имели вода, аммиак и углеводороды. Пропуская в течение недели электрический разряд через смесь СН4, ЫНз, Н2О и Нг, нагретую до температуры кипения воды, Миллер. [3167, 3168] обнаружил образование небольших количеств глицина, аланина, аспартата, глутамата, аминобутирата, лактата и т. п. (правда, в форме рацемических смесей). Подобные реакции могли происходить при грозовых разрядах, хотя нельзя утверждать, что грозы действительно наблюдались в такой атмосфере. Отсутст- [c.136]

    Glu или Asp а-Кетоглутарат или оксалоацетат Рис. 29.3. Образование аланина путем переаминирования пирувата. Донором аминогруппы может быть глутамат или аспартат. Другим продуктом реакции служит а-кетоглутарат или оксалоацетат. [c.301]

    Растения, выращенные на синем и красном свету, существенно различаются по составу продуктов фотосинтеза. По данным Н. П. Воскресенской (1965), при выравнивании синего и красного света по квантам, т. е. при одинаковых для фотохимической стадии фотосинтеза условиях освещения, синий свет уже через несколько секунд экспозиции активирует включение С в неуглеводные продукты — амино- и органические кислоты, главным образом в аланин, аспартат, малат, цитрат, и в более поздние сроки (через минуты) — во фракцию белков, а красный свет при коротких экспозициях — во фракцию растворимых углеводов и при минутных экспозициях — в крахмал. Таким образом, на синем свету по сравнению с красным светом в листьях дополнительно образуются неуглеводные продукты. Эти различия в метаболизме углерода при действии света разного качества обнаружены у целых растений с Сз- и С4-ПУТЯМИ ассимиляции СО2, у зеленых и красных водорослей они сохраняются при различных концентрациях СО2 и неодинаковой интенсивности света. Но у изолированных хлоропластов различий в образовании крахмала на синем и красном свету не обнаружено. Полагают, что фоторецептором, с деятельностью которого связаны изменения в метабо- [c.110]


    В том случае, когда главным исходным продуктом С4-Ф0Т0-синтеза является аспартат, для протекания С4-Цнкла необходимо наличие фондов аспартата и аланина. Такие фонды могут поддерживаться за счет восстановления азота (восстановление нитрата до солей аммония и образование аминокислот). При этом восстановление азота не связано непосредственно с синтезом аспартата в ходе фиксации СО2 в С4-цикле, так как аминогруппа - аспартата. постоянно обменивается в процессе реак  [c.325]

    Образование аланина в мышцах и его перенос в печень составляют часть глюко-зо-аланинового цикла (см. рис. 9.22) пируват, образующийся в этом цикле в печени из аланина, используется для глюконеогенеза. Другой продукт реакции трансаминирования — аспартат — используется в орнитиновом цикле как донор аминогруппы и превращается в фумарат (см. рис. 11.17). Затем фумарат вновь превращается в аспартат с промежуточным образованием малата и оксалоацетата (две реакции цитратного цикла). [c.346]


Смотреть страницы где упоминается термин Аланин образование аспартата: [c.97]    [c.546]    [c.226]    [c.320]   
Фотосинтез С3- и С4- растений Механизмы и регуляция (1986) -- [ c.322 ]




ПОИСК





Смотрите так же термины и статьи:

Аланин



© 2024 chem21.info Реклама на сайте