Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

МЭА-очистки очистки конвертированного газа

    После очистки от пыли газ сжимают до 3 МПа, промывают водой от H N в водяном скруббере 1, охлаждают и направляют в абсорбер сероочистки 3. Сюда же подают метанол при —38 °С, содержащий СОг, чтобы избежать большого градиента температур. Газ очищают (остаточное содержание сернистых соединений не более ЫО м м ) сжимают до 5 МПа и, конвертируют. Содержание СО в газе после конверсии 3%. После охлаждения газ очищают от СОг в абсорбере 7 до содержания менее 1-10-5 м /м . [c.294]


    Газ для синтеза аммиака обычно получают из исходного сырья, содержащего углерод. Окислы углерода, которые дезактивируют катализатор синтеза аммиака (гл. 7), должны быть удалены из синтез-газа перед его использованием. На большинстве современных аммиачных установок окись углерода конвертируют в две стадии с паром в двуокись углерода, абсорбируют СОа в скруббере и окончательно очищают синтез-газ метанированием остатков СО и СОа До уровня следов. Другие схемы очистки — такие, как абсорбция СО раствором меди или очистка путем низкотемпературной дистилляции (промывки) — обычно имеют более высокую эксплуатационную стоимость, а иногда также более высокие капитальные затраты, чем каталитическая очистка, но им все же может быть отдано предпочтение в некоторых случаях на отдельных заводах. [c.117]

    Основным фактором, который необходимо учитывать при выборе варианта с непосредственным впрыском или с установкой котла-утилизатора, является назначение пара высокого давления потребляется ли он только для использования в качестве технологического непосредственно на установке или имеются другие потребители пара, не связанные с производством синтез-газа. На установках производства тоннажного водорода окись углерода, содержащаяся в синтез-газе, конвертируется на специальном катализаторе путем взаимодействия с водяным паром для получения добавочного водорода с одновременным образованием двуокиси углерода. На таких установках весь вырабатываемый пар высокого давления потребляется на ступени конверсии окиси углерода для последующей очистки целевого водорода и удовлетворения других энергетических потребностей. [c.184]

    Выделенный сероводород конвертируют в печах Клауса для получения элементарной серы, что значительно повышает экономичность процесса очистки. Небольшое количество СОа, как правило, может оставаться в газе. Если содержание двуокиси углерода в очищаемом газе велико, предусматривается дополнительная ступень очистки. Большая часть абсорбированных газов выделяется нри снижении давления окончательную регенерацию растворителя проводят при повышенной температуре. [c.283]

    Кислый гудрон, образующийся при сернокислотной очистке, можно использовать для получения серной кислоты. При его сжигании образуется газ, содержащий много сернистого ангидрида последний конвертируется на катализаторах в серный ангидрид, который при растворении в воде или слабой кислоте образует серную кислоту [20]. Для описанного способа утилизации кислого гудрона требуются небольшие капиталовложения. Этот способ прост в эксплуатации и при его помощи можно пре- [c.17]


    Для получения технического водорода, содержащего только незначительные количества СО и СОг (в пределах десятых долей процента), углеводородные газы после очистки от сероводорода и органических соединений серы обычно конвертируют с водяным паром в трубчатых печах над никелевым катализатором при температурах 750—800° С. Получаемый газ, с целью удаления СО и образования дополнительных количеств водорода, подвергается после этого дальнейшей конверсии с водяным паром над [c.178]

    Обычно очистка газов гидрирования от органических соединений серы производится в 3 башнях в первой — органические соединения серы на железоокисном контакте конвертируются в сероводород, во второй — сероводород поглощается окисью цинка. Третья башня является контрольной. Подробнее об очистке газа от сераорганических соединений см. в главе XIV. [c.182]

    Рабочая температура для большинства современных катализаторов конверсии СО составляет 400—500 °С. Поэтому по завершении процесса конверсии метана конвертируют окись углерода при 400—500 °С на специальном катализаторе в отдельном аппарате. Обычно стремятся к возможно более полному превращению СО в СОг как для лучшего использования газа, так и потому, что остающаяся в газе окись углерода отравляет катализатор процесса синтеза аммиака, а удаление окиси углерода из газовой смеси является сложной и дорогой операцией. Разрабатывают также катализатор, на котором конверсию окиси углерода можно вести при 200—250 °С. В этом случае содержание СО снижается до 0,3%, что позволяет значительно упростить очистку газа, применяя для этого лишь предкатализ (стр. 200). [c.176]

    Природный газ, содержащий метан с давлением, близким к атмосферному, поступает в теплообменник /, где подогревается отходящим из конвертора окиси углерода 9 горячим конвертированным газом до температуры 380°С. Затем он направляется для очистки от сернистых соединений в аппарат 2, заполненный поглотителем на основе окиси цинка. При температуре 380°С достигается достаточно полная очистка газа от сернистых соединений (остается серы не более 2—3 мг/м газа). Очищенный газ смешивается в парогазосмесителе 3 с водяным паром, нагретым до 380°С в пароперегревателе 10. Полученная парогазовая смесь с объемным отношением пар газ = 2,5 1 направляется в трубчатый контактный аппарат 4 на первую ступень конверсии метана. Никелевый катализатор расположен в вертикально подвешенных трубах из хромо-никелевой жароупорной стали, обогреваемых с наружной стороны топочными газами. Парогазовая смесь проходит по трубам сверху вниз, при этом температура ее повышается с 380 °С на входе до 700 °С на выходе из труб. В трубчатой печи метан конвертируется приблизительно на 70%. Дальнейшая конверсия метана производится в конверторе второй ступени 5, заполненном никелевым катализатором. В этот конвертор подается воздух и за счет сжигания части газа температура в конверторе может достигать 1000 °С. Количество воздуха, подаваемого в конвертор второй ступени с помощью регулятора поддерживается на таком уровне, чтобы в конечном конвертированном газе обеспечивалось объемное отношение азот водород= 1 3. [c.234]

    Технологическая схема водной очистки конвертированного газа от двуокиси углерода представлена на рис. У-И. Конвертир.о- [c.164]

    В ЭТОМ процессе отсутствует отдельный узел очистки конвертиро-ванного газа от СО2, что позволяет сократить капиталовложения и энергетические расходы. Кроме того, удачно решен вопрос использования тепла конвертированного газа. Расчеты, проведенные для установок производительностью 500/п NH3 и 860 m карбамида в сутки, показывают, что по сравнению с обычным процессом фирмы Тое-Коацу описанный способ позволяет получить экономию по капиталовложениям на 5—10% и по эксплуатационным расходам на 6—7%. Энергетические расходы по производству [c.213]

    Конверсия метана коксового газа. Получение СО-водородной смеси на базе коксового газа может осуществляться высокотемпературной либо каталитической конверсией содержащегося в нем метана. Коксовый газ, очищенный от нафталина, поступает на очистку от сероводорода (моноэтаноламиновая или мышьяковосодовая), затем освобождается от тяжелых углеводородов в угольных фильтрах и направляется в конверторы, заполненные железохромовым катализатором, где при температуре 400° С сероорганические соединения конвертируются до сероводорода. Последний удаляется из газа на специальных установках. [c.16]

    Схема не является энерготехнологической. В котлах-утилизаторах получают пар среднего давления (40 ат), илущий в основном на конверсию в трубчатую печь. Сжатый до 3,8 ,О МПа природный газ смешивается с азотоводородной смесью и поступает в конвективную зону печи, где нагревается до 380°С и затем направляется на очистку от сернистых соединений. Система очистки аналогична описанной выше. Очищепннй газ сменшвается с водяным паром ( -г г 3,7 1) и направля-е сл в конвективные змеевики нагрева парогазовой смеси (см.рис.75), При температуре 520-540°С газ поступает в реакционные трубы //, где конвертируется 90-92% метана. Остаточный метан конвертируется в конверторе Д куда компрессором подается воздух, подогретый до 500°С в конвективном змеевике в печи. Из нижней части реактора конвертированный газ при температуре 960-1000°С и давлении 26-28 ат поступает в котел-утилизатор /4 и охлаждается в нем до 510-520°С. [c.250]


    Путем частичного сжигания метана или упомянутых выше реакций метана с кислородом, водяным паром и СО при помощ,и несколько модифицированного способа также можно получать исходную газовую смесь для синтеза аммиака. Метан частично конвертируется водяным паром при температуре 700—800° над никелевыми катализаторами затем происходит процесс частичного сжигания с воздухом, причем азот подводится в количестве, требуемом в дальнейшем для синтеза аммиака. При сжигании температура газов вновь повышается, так что остаточный метан можно дополнительно конвертировать с водяным паром. В конечном итоге получают газ, состоящий в основном из азота, водорода и окиси углерода. Последнюю обычным способом конвертируют водяным паром над железными катализаторами в СОо и Нг- Для дальнейшей переработки и очистки газов применяют обычные классические способы 118]. В США за период 1926—1954 гг. построено 27 заводов синтеза аммиака производительностью около 8000 т1сутки ЫН , работающих по описанному способу [19]. [c.341]

    Газ для синтеза метанола получают по такой же схеме, за исключением того, что часть газа, очищенного от сернистых соединений, конвертируют, и смешивают с некоивертированным газом перед очисткой от СОг. Содержание СОг в газе после очистки 1 % [73]. [c.294]

    Конверсия окиси углерода всдякым парсм проводится на железохромовом катализаторе в двухступенчатом конверторе 6 Паро-газовая смесь последовательно проходит первую ступень, в которой конвертируется основное количество СО при 470— 520 °С, затем испаритель и вторую ступень. В испарителе вследствие испарения впрыскиваемого в газовую смесь конденсата происходит ее охлаждение. Во второй ступени конвертируется оставшаяся окись углерода, при этом температура газа повышается незначительно. Конвертированный газ при 390—420 °С и остаточном содержании 2,5—4% СО поступает в котел-утилизатор 7, где охлаждается до 180—200 °С. При этом в котле-утилизаторе образуется водяной пар давлением 5 ат. Выходящий из котла газ охлаждается до 80 °С в теплообменнике 8, нагревая при этом воду сатурационного цикла. Окончательное охлаждение конвертированного газа происходит в конденсационной башне 9, где он непосредственно соприкасается с водой. Далее газ направляется на очистку от СО и СО. [c.35]

    Технологически димеризация ацетилена осуществляется следующим образом. В реакторах имеются устройства, обеспечивающие максимально возможное соприкосновение газообразного ацетилена с жидким раствором ацетилена (барботажные трубы, мешалки, орошение насадки и др.). Реакция происходит в гомогенной жидкой фазе. При прохождении через реактор часть ацетилена конвертируется (превращается) в моновинилацетилен. Реакционные газы, выходящие из верхней части реактора, содержат целевой продукт—моновинилацетилен, дивинилацетилен, непрореагировавший ацетилен, водяной пар и др. Газы поступают в конденсационную систему, где последовательно сжижаются и отделяются от моновинилацетилена. Ожиженный моновинилацетилен подвергается очистке и ректификации, после чего направляется на гидрохлорирование при получении хлоропрена. Особое значение для безопасного ведения процесса получения моновинилацетилена имеет очистка ацетилена от кислорода, могущего образовать с моновинилацетиленом и дивинилацетиле-ном чрезвычайно взрывчатые перекисные соединения. [c.196]

    Чтобы снизить содержание окислов углерода в техническом водороде до десятых долей процента, углеводородные газы после очистки от сероводорода и органических соединений серы конвертируют с водяным паром в трубчатых печах при 800° над никелевым или глиноземным катализатором. Образующуюся при этом окись углерода переводят в двуокись путем повторной конверсии с водяным паром над железным катализатором при 450—500°. Вслед за тем наступает фаза очистки. СОг и Н2О отделяют в скрубберах, орощаемых щелочью (или горячим раствором поташа) и моноэтаноламином. Эффективна также промывка газа от СО2 и Н2О жидким аммиаком, а от СО и О2—аммиачным раствором амида щелочного металла. В этом случае протекают реакции  [c.104]


Смотреть страницы где упоминается термин МЭА-очистки очистки конвертированного газа: [c.239]    [c.242]    [c.37]    [c.109]    [c.421]    [c.85]    [c.52]   
Очистка технологических газов (1977) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Конвертированный газ

Очистка газов конвертированного



© 2025 chem21.info Реклама на сайте