Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидроксиды как характеристические соединения

    Характеристические соединения. Марганец в определенном смысле может служить модельным элементом для иллюстрации зависимости кислотно-основных свойств оксидов и гидроксидов от степени окисления, в то же время на примере этого элемента в рядах его производных, отвечающих различным степеням окисления, удобно проследить изменение окислительно-восстановительных свойств и влияние реакции среды на стабильность различных степеней окис- [c.375]


    Характеристические соединения. В отличие от щелочных металлов элементы подгруппы кальция образуют прочные характеристические оксиды 30, Их получают термическим разложением карбонатов или нитратов. Все оксиды — тугоплавкие бесцветные гигроскопические вещества. Они бурно взаимодействуют с водой с выделением большого количества теплоты и образованием гидроксидов. Все гидроксиды Э(0Н)2 являются сильными основаниями. Их растворимость в воде и сила основания растет от Са(0Н)2 к Ва(0Н)2. Помимо характеристических оксидов, металлы подгруппы кальция (в отличие от Ве и М ) образуют пероксиды ЭОа. Они намного менее стабильны в сравнении с оксидами (например, СаОа взрывается при 275°С) и сильные окислители. [c.131]

    Характеристические соединения. Оксид литня Ы О получается непосредственным взаимодействием элемеитов. Он представляет собой бесцветное кристаллическое вещество с преимущественно ионной связью ( пл = 1570°С АЯ , за, =—595,8 кДж/моль). По химической природе ЫаО — основный оксид, а потому при нзaп ra-действин с кислотными оксидами и кислотами образует соли. Так, ЬтаО легко поглощает СО2 с образованием карбоната лития. Термическим разложением карбоната, а также гидроксида и нитрата в токе сухого водорода также можно получить оксид лития. Оксид [c.112]

    По химическим свойствам простые вещества, как известно, также подразделяются на металлы и неметаллы. С этими двумя классами генетически связаны соответствующие ряды характеристических соединений оксидов (основных и кислотных), гидроксидов (оснований и кислот). Отличительной особенностью этих рядов является способность к взаимодействию с образованием солей, т. е. к взаимной нейтрализации в широком смысле слова. Чем ярче выражены металлические и неметаллические свойства простых веществ, тем активнее взаимодействие между ними и их характеристическими соединениями. Таким образом, в химии ярко проявляется симметричность относительно кислотно-основного взаимодействия, причем каждый из генетических типов базируется на одном из двух классов простых веществ. [c.39]

    Из характеристических соединений хрома в низшей положительной степени окисления +2 известны черный оксид СгО и соответствующий гидроксид Сг(ОН)з желтого цвета. Сг(0Н)2 обладает только основными свойствами. Осторожным обезвоживанием Сг(0Н)2 в восстановительной атмосфере можно получить оксид СгО, который при небольшом нагревании диспропорционирует. [c.451]


    В этом параграфе в качестве характеристических соединений рассматриваются только оксиды и гидроксиды, поскольку для переходных элементов не характерно образование солеобразных и ковалентных гидридов. [c.376]

    Оксиды. Оксиды занимают особое положение среди всех бинарных соединений. Еще Д.И.Менделеев относил "высшие солеобразующие окислы" к характеристическим соединениям. Состав высшего оксида давал возможность определить групповую принадлежность элемента. Свойства оксидов позволяли характеризовать сам элемент как металл или неметалл. Кроме того, с учетом кислотно-основных свойств оксидов делались выводы о характере соответствующих гидроксидов, а также о составе и свойствах соответствующих солей. На первом этапе становления и развития Периодического закона роль оксидов как характеристических соединений была исключительно велика. С развитием теории строения атома и в результате выявления физического смысла Периодического закона, казалось бы, роль характеристических соединений утрачивается. Но периодически изменяются не только свойства элементов, но также формы и свойства их соединений. Поэтому для описания химического облика элементов характеристические соединения по-прежнему играют исключительно важную роль. [c.265]

    Гидроксиды как характеристические соединения. Как известно, гидроксиды обычно рассматриваются как продукты взаимодействия оксидов с водой независимо от того, наблюдается это взаимодействие в действительности или гидроксид может быть получен только косвенным путем. Гидроксиды яв.ляются характеристическими соединениями, поскольку свойства гидроксида определяют в конечном итоге принадлежность элемента к металлам или неметаллам. Так, [c.282]

    Характеристические соединения. ВеО получают термическим разложением гидроксида, сульфата, нитрата или основного карбоната бериллия. Он бесцветен, плавится при 2580°С (ДЯ 2Э8 кДж/моль), а [c.316]

    Характеристические соединения. Характеристические оксиды ЭО получают из элементов. Оксиды разлагаются до плавления. От цинка к ртути термическая стойкость уменьшается. В отличие от ZnO (структура вюртцита) и HgO (ромбическая структура) оксид кадмия имеет кристаллохимическое строение Na l, что свидетельствует о большей ионности dO. Оксид цинка амфотерен, а dO и HgO — основные оксиды. Гидроксиды Э(0Н)2 практически не растворяются в воде Zn(OH)a (рПР П), d(0H)2 (рПР14) и Hg(OH)a (рПР 16). Гидроксид ртути химически малостоек. Гидроксид цинка — амфолит с преобладанием основных свойств. При растворении в щелочах образуются гидроксокомплексы (Me Zn (0Н)4]), а не цинкаты типа NaaZnOa. Последний может быть получен только в твердом состоянии спеканием, например, соды с ZnO. [c.135]

    Из характеристических соединении хрома в низшей положительной степени окисления +2 известны черный оксид СгО и соответствующий гидроксид Сг(ОН)2 желтого цвета. Гидроксид хрома (+2) можно получить путем взаимодействия со щелочами дихлорида хрома СгС1г в отсутствие кислорода воздуха. Сг(ОН)з обладает только основными свойствами и легко растворяется в кислотах с образованием соответствующих солей Сг (+2). Осторожным обезвоживанием Сг(ОН)а в восстановительной атмосфере можно получить оксид СгО, который при небольшом нагревании диспропорционирует  [c.338]

    Исторически сложи. юсь так, что воирссы, связанные с электролитической диссоциацией, изучались на примере водных растворов. Этому в немалой степени способствовало то обстоятельство, что вода является самым расиространеп1Ш1м в природе полярным растворителем. К тому же она характеризуется максимальным значением диэлектрической постоянной, в силу чего в водной среде наблюдается наибольшее ослабление кулоновского взаимодействия. Поэтому вода представляет собой наиболее ионизирующий растворитель для электролитов. Не случайно в дальнейшем с развитием брестедовской (протонной) теории кислот и оснований в качестве эталонной кислоты был выбран гидратированный протон — гид-роксоний Н3О +. И в настоящее время кислотно-основные свойства гидроксидов как характеристических соединений рассматриваются но отношению к водной среде. [c.84]

    Характеристические соединения. ВеО получа от термическим разложением гидроксида, сульфата, нитрата или основного карбоната бериллия. Он бесцветен, плавится при 2580 °С (Д/У , 2 1,ч= =—611,0 кДж/моль), а охлаждение расплава ведет к образованию стекла. Кристаллы ВеО имеют структуру вюртцита. И стеклообра-зование, и вюртцитпая структура ВеО свидетельствуют о его малой полярности. В воде он не растворяется, водородом не восстанавливается, но химической природе оп амфотерен взаимодействует с более кислотными и основными оксидами, а также с кислотами и основаниями. [c.126]

    Характеристические соединения. Типичными степенями окисления для Fe, Со и Ni являются +2 и +3. В соответствии с Э1им пз-вестны оксиды ЭО и ЭзО.-,. Эти оксиды в чистом виде нельзя получить прямым синтезом, поскольку прн этом образуется набор оксидов, каждый из которых является фазой переменного состава. Их получают косвенным путем — разложением некоторых солей или гидроксидов. Если оксиды ЭО можно легко получить для всех трех элементов, то Э.,Оз устойчив лишь для железа и получается при обезвоживании гидроксида. Оксиды кобальта (+3) и никеля (Ч-З) неустойчивы и склонны к разложению с отщеплением кислорода  [c.403]


    Соединения с неметаллами. Несмотря иа химическую благородность платиноидов, при нагревании они способны образовывать соединения с галогенами, халькогенами и пниктогеиами (кроме азота), кремнием и бором. Поскольку оксиды и гидроксиды платиновых металлов малостабильны, роль галогенидов как характеристических соединений в этом случае существенно возрастает. В соответствии с общими закономерностями, характерными для галогенидов в целом, в ряду F—С1—Вг—I число известных галогенидов умень- [c.421]

    Гидроксиды щелочных металлов МеОН — кристаллические вещества, растворимые в воде и спиртах. Их водные растворы — едкие щелочи — самые сильные основания. Гидроксиды получают электролизом водных растворов хлоридов. При этом в катодном пространстве выделяется водород и образуется гидроксид щелочного металла. Побочными продуктами производства являются водород и хлор (на аноде). При нейтрализации растворов гидроксидов щелочных металлов галогеноводородными кислотами образуются их галогениды, которые являются характеристическими соединениями. Они также получаются непосредственным взаимодействием щелочных металлов с галогенами. Ггшогениды щелочных метгьл-лов характеризуются высокими температурами плавления и кипения, по природе химической связи они — самые ионные соединения. [c.308]

    Характеристические соединения. Элементы первой диады образуют летучие оксиды Кп04 и 0804. Это единственные в своем роде примеры соединений, в которых степень окисления элемента УПШ-группы равна -Н8, т.е. отвечает номеру группы. В силу координационной насыщенности эти оксиды не присоединяют воду, поэтому им не отвечают гидроксиды. Они способны растворяться в воде, химически с ней не взаимодействуя. Кислотный характер этих оксидов проявляется лишь в их способности образовывать комплексные соли с основными гидроксидами, например К2[0804(0Н)2]. Отвечаюпдае подобным комплексным солям кислоты называются аквакислотами, наприме]) Н2[0804(0Ы)2]. [c.497]


Смотреть страницы где упоминается термин Гидроксиды как характеристические соединения: [c.3]    [c.60]    [c.60]    [c.83]    [c.121]    [c.130]    [c.339]    [c.447]    [c.265]    [c.283]    [c.305]    [c.312]    [c.451]    [c.498]    [c.283]    [c.312]    [c.451]    [c.498]   
Смотреть главы в:

Неорганическая химия -> Гидроксиды как характеристические соединения

Общая и неорганическая химия 1997 -> Гидроксиды как характеристические соединения

Общая и неорганическая химия -> Гидроксиды как характеристические соединения




ПОИСК





Смотрите так же термины и статьи:

Гидроксиды

Соединения характеристические



© 2024 chem21.info Реклама на сайте