Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Количество пробы и хроматографическая аппаратура

    Аппаратура, Принципиальная схема газового хроматографа представлена на рис. 3.3. Подвижная фаза (газ-носитель) непрерывно подается из баллона 1 через редуктор 2 в хроматографическую установку. Анализируемую пробу вводят дозатором 4 либо в поток газа-носителя, либо через резиновую мембрану в испаритель 3. Из испарителя проба переносится газовым потоком в хроматографическую колонку 5. Изменение состава выходящей из колонки смеси фиксируется детектором 7 и записывается на ленте регистратора 9. Хроматографическая колонка и детектор помещены в термостаты 5 и 5. Дозатор предназначен для введения точного количества образца пробы в хроматограф. В качестве дозатора используют специальное дозирующее устройство или микрошприц. Объем вводимой пробы 0,1 мкл — 0,1 мл для жидких и 0,5—20 мл для газообразных проб. [c.192]


    КОЛИЧЕСТВО ПРОБЫ И ХРОМАТОГРАФИЧЕСКАЯ АППАРАТУРА [c.336]

    В результате на стеклянные шарики можно наносить менее устойчивые к нагреванию неподвижные жидкие фазы и использовать хроматографическую аппаратуру, рассчитанную на меньшую температуру, т. е. проводить разделение соединений, нестабильных при повышенной температуре. Вследствие малого количества неподвижной жидкой фазы масса пробы также должна быть меньше. Благодаря правильной форме стеклянных шариков колонки, заполняемые ими, характеризуются воспроизводимым числом теоретических тарелок. [c.203]

    Реакция в потоке должна проходить быстрее, может быть использована более простая аппаратура. Однако в этом случае необходимо обращать особое внимание на полноту конверсии исходной пробы. Если процесс превращения длителен (например, при поступлении пробы в зону реакции в течение продолжительного времени) или если количество образующихся продуктов велико, непосредственное разделение соединений на хроматографической колонке невозможно из-за низкой эффективности разделения. В этом случае необходимо перед хроматографическим разделением провести концентрирование продуктов (например, путем конденсации их в охлаждаемой ловушке) и затем быстро ввести их в колонку для разделения. Иногда для улучшения разделения образовавшиеся продукты подвергают новому превращению. Например, ранее при определении водорода вместо воды анализировали ацетилен, который количественно образуется при реакции воды с карбидом кальция. Однако введение дополнительной стадии связано с введением источника дополнительных ошибок, в частности в настоящее время карбид кальция для превращения воды в ацетилен не используют, так как было показано, что в результате образования слоя твердого продукта на поверхности реагента реакция не является строго количественной [c.190]

    Капиллярная хроматография характеризуется рядом существенных особенностей в методике и аппа-ратуре практически на всех стадиях хроматографического анализа — от введения пробы до детектирования разделенных компонентов. Капиллярную хроматографию можно рассматривать как микрометод газовой хроматографии. Миниатюризация колонки (аппаратуры) позволила существенно уменьшить величину анализируемой пробы и одновременно повысить эффективность разделения. Развитие капиллярной хроматографии отражает общую тенденцию развития аналитической химии, а именно переход к микрометодам. В последние годы применение капиллярной хроматографии резко расширилось. Это объясняется, по-видимому, не только высокой эффективностью метода и его большой чувствительностью, но и расширением области применения метода, особенно в сторону анализа высококипящих и нестойких соединений. Последнее преимущество метода связано с резким уменьшением количества сорбента и, следовательно, понижением температуры анализа, а также с более широким применением адсорбционно и каталитически инертных материалов для изготовления колонки и твердого носителя. [c.5]


    Для определения типа органического вещества непосредственно в породах используют ступенчатый пиролиз или нагревание образца при программируемом подъеме температуры, при этом имеется возможность дискретного определения свободных и адсорбированных веществ и нелетучих нерастворимых органических соединений, присутствующих в породах. При проведении исследований с использованием аппаратуры и методики, применяемых в ПГХ, предварительное выделение органического вещества из породы не обязательно, однако следует учитывать возможное влияние неорганической матрицы на состав продуктов пиролиза. Исследованиями керогена [253] было показано, что присутствие минеральной матрицы приводит к образованию большего количества легких продуктов пиролиза. Минеральные составляющие пиролизуемой пробы. могут не только оказывать каталитическое действие на процесс разложения, но и влиять на удерживание продуктов пиролиза при последующем их хроматографическом разделении, в особенности на удерживание тяжелых компонентов. Было показано [254], что минеральная матрица может извлекать высокомолекулярные (более jj) компоненты пиролизата, что, естественно, будет оказывать влияние на результаты определения его состава. [c.228]

    Процесс превращения анализируемого вещества в простые, < элементарные продукты может проводиться как в стационарных условиях, так и в проточном реакторе. Реакция в потоке должна проходить быстрее, может быть использована более простая аппаратура. Однако в этом случае необходимо обращать особое внимание на полноту конверсии исходной пробы. Еслти процесс превращения длителен (например, при поступлении пробы в зону реакции в течение продолжительного времени) или если количество образующихся продуктов велико, непосредственное разделение соединений на хроматографической колонке невозможно из-за низкой эффективности разделения (см., например, [5]). В этом случае необходимо перед хроматографическим разделением провести концентрирование продуктов (например, путем конденсации их в охлаждаемой ловушке [6]) и затем быстро ввести их в колонку для разделения. [c.133]

    Процесс разделения на хроматографической колонке компонентов топлив и масел контролируется по изменению показателя преломления получаемых фильтратов. Показатель преломления определяется либо непрерывно (при помощи автоматической самозаписывающей аппаратуры), либо периодически (для отбираемых проб). Наиболее удобно отбирать пробы фильтрата в количестве 0,1 — 0,5 % от взятой навески исследуемого продукта. При этом получается не слишком большое число фракций и достигается относительно хорошая четкость разделения. [c.34]

    Газо-жидкостная хроматография также является распространенным и эффективным методом определения остаточных количеств пестицидов в воде (47, 79). Непрерывное усовершенствование аппаратуры и приемов подготовки проб для анализа позволяет проводить газо-хроматографическое определение пестицидов с большой чувствительностью и точностью. Широкое применение для определения галогенсодержащих соединений получил электронно-захватный детектор [80, 81]. При работе с этим детектором предъявляются повышенные требования к способам очпстки экстрактов, к чистоте используемых химических реактивов, посуды [82, 83]. Было отмечено, что посторонние пики реже появляются на хроматограммах при извлечении пестицидов из водных проб прямым экстракционным способом [84] по сравнению с угольноадсорбционным способом извлечения [85—88]. [c.227]

    Широкое применение ПГХ для исследования нелетучих высокомолекулярных соединений обусловлено преимуществами газовой хроматографии как аналитического метода, основными из которых являются 1) экснрессность (несколько минут), что позволяет сократить продолжительность анализа в десятки и даже в сотни раз по сравнению с продолжительностью при использовании традиционных методов 2) высокая чувствительность, позволяющая определять небольшие количества полимера или другого нелетучего соединения в полимерной композиции или материале сложного состава 3) возможность проведения анализа при наличии миллиграммовых количеств образца, благодаря высокой чувствительности 4) возможность определения нескольких компонентов исследуемого образца в одном хроматографическом опыте 5) отсутствие необходимости предварительной подготовки пробы (удаление ингредиентов, минеральных добавок, органических растворителей, выделение и очистка полимера и т. п.) благодаря избирательному принципу разделения, являющемуся сущностью хроматографического метода 6) универсальность метода, позволяющая решать разнообразные задачи, связанные с определением состава и некоторых свойств исследуемых образцов 7) высокая информативность, заключающаяся в возможности получения на основе одного опыта нескольких качественных и количественных характеристик 8) сравнительная простота и относительно низкая стоимость аппаратуры 9) возможность автоматизации процесса и обработки данных. [c.7]


    Как известно, при анализе нестабильных и реакционноспособных соединений возможна их частичная адсорбция в процессе хроматографического анализа на сорбенте или коммуникациях аппаратуры либо частичная реакция. Следствием этого является ошибка в определении поправочных коэффициентов. При исследовании причин ошибок определения поправочных коэффициентов в процессе анализа трибутилфосфина методом газо-жид-костной хроматографии было установлено, что количество трибутилфосфина, вступающего в колонке в нежелательные взаимодействия, остается постоянным, поэтому абсолютная погрешность также постоянна и ее можно учесть соответствующим увеличением объема хроматографируемой пробы. Аналогичное явление отмечено также при анализе фосфорорганических соединений [76 ]. Увеличение массы анализируемой пробы позволяет получить воспроизводимые количественные результаты при анализе ртутьорганических соединений [35]. При анализе трихлорида бора было отмечено, что при навеске менее 10 мг пик трихлорида бора имеет резко выраженную асимметричную форму и результаты невоспроизво- [c.118]

    Интенсивное применение СОС послужило толчком для совершенствования методов их анализа. Ранее применяемые методы определения свинца в топливах были основаны на химическом переводе алкильных соединений свинца в хлористый свинец или хромат свинца, которые затем определялись гравиметрически, титрометрически, колориметрически, комплексометрически или полярографически [5, 9]. Недостатком этих методов, является определение общего количества свинца, а не концентрации отдельных алкильных его соединений длительность анализа составляет несколько часов. Газовая хроматография (ГХ) в настоящее время получила широкое применение как надежный и точный физико-химический метод разделения и анализа веществ в самых различных областях научных исследований и в промышленности [88— 92]. Возможность проведения экспрессных анализов, стандартность аппаратуры, минимальный размер пробы, разделительная способность хроматографической колонки, высокая чувствительность детектирующих систем (10 —10 %) — все это определило успешное и быстрое распространение ГХ для разделения, анализа и физико-химических исследований СОС. [c.16]


Смотреть страницы где упоминается термин Количество пробы и хроматографическая аппаратура: [c.118]    [c.97]   
Смотреть главы в:

Руководство по газовой хроматографии -> Количество пробы и хроматографическая аппаратура

Руководство по газовой хроматографии -> Количество пробы и хроматографическая аппаратура




ПОИСК







© 2024 chem21.info Реклама на сайте