Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматографическая колонка, разделительная способность

    Анализируемую газовую смесь пропускают через колонку с адсорбентом или носителем неподвижной жидкости в непрерывном потоке воздуха при одновременном нагреве хроматографической колонки. Нагрев колонки дает возможность полнее и быстрее разделять компоненты вследствие изменения их адсорбционной способности. В зависимости от состава смеси для хроматографической колонки применяют различные адсорбенты или носители с различными неподвижными жидкими фазами. Так, для разделения смеси предельных углеводородов используют газо-адсорбционную хроматографию в качестве адсорбента применяют, например, крупнопористый силикагель МСК или КСК, а для разделения смесей, содержащих также и непредельные углеводороды, — окись алюминия. Однако на указанных адсорбентах не удается выделить некоторые изомерные компоненты. В этом случае применяют комбинацию газо-адсорбционной и газожидкостной хроматографии, а именно разделительную колонку наполняют адсорбентом, смоченным небольшим количеством малолетучей жидкости. Такие адсорбенты называются модифицированными. Сочетание газо-адсорбционной и газо-жидкостной хроматографии позволяет полнее разделить сложную смесь, состоящую из большого Числа разных по своей природе компонентов. [c.144]


    Разделительная способность хроматографической колонки в значительной степени зависит от значения удельной поверхности сорбента. Поэтому в распределительной хроматографии неподвижную [c.179]

    Следовательно, можно сделать вывод, что теория эквивалентных тарелок позволяет рассчитать одну из важнейших характеристик хроматографических колонок — высоту эквивалентной теоретической тарелки, т. е. разделительную способность колонки. Чем меньше величина ВЭТТ, тем больше разделительная способность колонки. [c.30]

    Разделительная способность как адсорбционной, так и распределительной хроматографической колонки в значительной степени зависит от развития удельной поверхности сорбента. Поэтому в распределительной хроматографии неподвижную жидкость наносят на твердые зерненые носители с большой удельной поверхностью. Однако следует учитывать, что наряду с растворением компонентов разделяемой смеси в этой жидкости может иметь место также и адсорбция на поверхности носителя при недостаточном покрытии жидкостью. Кроме того, возможны адсорбционные процессы на границах газ — жидкая пленка и жидкость — твердый носитель. Это особенно относится к хроматографии на модифицированном сорбенте. Этот метод является промежуточным между газо-жидкостной и газо-твердой хроматографией. Он основан на том, что твердый адсорбент, являющийся неподвижной фазой, покрыт (модифицирован) небольшим количеством жидкости. В этом случае разделение обусловлено как адсорбцией на поверхности раздела газ — твердое тело, так и абсорбцией в жидкости. [c.17]

    По своей разделительной способности газовая хроматография — наиболее эффективный из всех известных методов хроматографического анализа С появлением капиллярных колонок разделительная способность газовой [c.520]

    По [9] селективность неподвижной фазы определяется изменением относительного удерживаемого объема вещества разделяемой смеси по сравнению с относительным давлением пара этих веществ в чистом состоянии и количественно выражается величиной относительного коэффициента активности компонентов разделяемой смеси. Величина селективности также может характеризоваться коэффициентом селективности (см. ниже). Разделительная способность хроматографической колонки определяется как ее эффективностью, так и селективностью сорбента. На рис. 14 приведена иллюстрация зависимости степени разделения смеси двух веществ от эффективности колонки и селективности сорбента. Как видно из приведенных хроматограмм, достаточно полное разделение можно осущест- [c.45]


    Выбор НЖФ в ГЖХ зависит от природы разделяемые паров (газов). Необходимые требования к НЖФ малая вязкость и нелетучесть при температуре колонки химическая термостойкость высокая селективность достаточная растворяющая способность по отношению к разделяемым веществам. Хорошие результаты, как правило, дают те жидкие фазы, природа которых близка к разделяемым веществам (подобное растворяется в подобном). Очень важно правильно приготовить сорбент н наполнить колонку. Разделительная колонка — одна из основных деталей хроматографической установки (образно выражаясь, это ее сердце). От равномерности наполнения колонки зависит эффективность разделения .  [c.106]

    Приведенные выше выражения позволяют найти число N эффективных теоретических тарелок хроматографической колонки в зависимости от условий опыта, т. е. определить ее разделительную способность или, наоборот, рассчитать необходимые условия опыта при заданном числе эффективных теоретических тарелок. [c.29]

    Блок хроматографических колонок. Колонка является наиболее важной частью любой хроматографической системы, поскольку независимо от других элементов хроматографической схемы характеристики хроматографа определяются в первую очередь разделительной способностью хроматографической колонки. [c.47]

    Разделительная способность колонки онределяется селективностью НФ и размыванием хроматографических полос при движении вещества по слою сорбента. Более эффективной оказывается та колонка, в которой при прочих равных условиях хроматографические полосы размываются в меньшей степени. Причины размывания можно подразделить на термодинамические, диффузионные и кинетические. [c.357]

    Относительные величины в уравнениях (4) и (5) не зависят от внешних условий в широких пределах. Они определяются главным образом разделительной способностью хроматографической колонки в отношении веш,еств 1 и 2. [c.30]

    Многообразие отношений между неподвижной фазой и компонентами смеси не позволяет однозначно расположить неподвижные фазы в шкале полярности, так как селективность основана не только на различиях в полярности. Поэтому мы не будем здесь рассматривать характеристику селективности (подробное обсуждение дано в гл. VI). Вполне достаточно оценивать разделительную способность хроматографических колонок по разделительному действию, суммирующему разделительные свойства, и комплексный характер разделительного действия в отношении относительной летучести и селективности следует учитывать только при изучении путей улучшения этой характеристики. [c.40]

    Параметр разделения , введенный в формулы (14) и (17) или (37), можно уже рассматривать как критерий разделительной способности. Однако эта величина отражает степень лишь частичного разделения и относится к веществам, пики которых расположены на хроматограмме очень близко друг к другу. При использовании хроматографических колонок, обладающих высокой эффективностью, состояние частичного разделения не представляет особого интереса. Величина, выражающая разделительную способность, должна характеризовать больший отрезок хроматограммы. Рассмотрим такую величину на примере разделения двух компонентов. [c.48]

    Точное выражение разделительной способности через -величину справедливо, таким образом, только для веществ, температуры кипения которых лежат в интервале температур кипения компонентов, используемых для расчетов. Так как хроматографические колонки обладают различными свойствами ио отношению к различным классам веществ, их оценку следует проводить, руководствуясь практической задачей разделения. Вследствие этого 2-величина является выражением разделительной способности хроматографической колонки по отношению к данному классу веществ. Так как разделительная способность по отношению к родственным группам веществ различается мало, можно, например, с помощью -величины для м-алканов оценивать разделительную способность колонки ио отношению к другим углеводородам — изоалканам, олефинам и циклическим соединениям. [c.53]

    Одна и та же хроматографическая колонка может давать при различных условиях анализа весьма различные значения для Л или Z. Таким образом, ее разделительная способность зависит от условий анализа. Так как хромато- [c.54]

    Согласно рис. 21, нельзя бесконечно увеличивать разделительную способность удлинением хроматографической колонки. При данных условиях разделительная способность (а также эффективность разделения, выраженная с помощью величины разделения И ,,) достигает предельного значения нри длине колонки 200 м. Экстраполяция кривой до 320 м дала бы незначительный рост разделительной способности. Продолжительность анализа, напротив, все еще увеличивается по линейному закону. Принимая во внимание время анализа, не стремятся достигнуть максимальной разделительной способности путем удлинения хроматографической колонки, а останавливаются па той длине, прп которой функция Л = I (Ь) обнаруживает еще заметное увеличение. [c.63]


    Оценка разделительной способности хроматографических колонок с учетом времени анализа [c.64]

    При помощи 91- или 3-величин разделительную способность хроматографических колонок оценивают с учетом времени анализа. Однако по этим характеристикам нельзя определить, возможно ли одинаковое разделение на тех же колонках за более короткое время. Вопрос о минимально необходимом времени анализа для разделения определенной пары веществ представляет интерес прежде всего потому, что с этим одновременно связан вопрос об оптимальных для решения данной задачи условиях анализа и наименьших затратах. Различные авторы исследовали связь между продолжительностью анализа и свойствами колонки с целью получения самого короткого времени анализа чаще всего в таких исследованиях они исходили из соотношений между разделительной способностью, эффективностью разделения и разделительным действием, приведенных в предыдущем разделе. [c.66]

    Прогресс в газовой хроматографии был достигнут с помощью высокоэффективных хроматографических колонок. Очень трудные задачи разделения компонентов, весьма сходных по свойствам, возможны лишь на высокоэффективных хроматографических колонках. Однако для многих целей использование хроматографических колонок с максимальной разделительной способностью либо не является необходимым, либо нецелесообразно, так как процесс приготовления такой колонки оказывается слишком трудоемким, а продолжительность анализа слишком велика. Если принять во внимание это обстоятельство, то прежде всего следует иметь в виду цели применения хроматографической колонки. [c.67]

    Приготовление заполненных высокоэффективных хроматографических колонок описано в фундаментальной работе Чешира и Скотта (1957). Эти исследователи получили колонки с эффективностью в 30 ООО теоретических тарелок и разделили м- и ге-ксилолы на сквалане. После открытия капиллярных колонок достижение такого рода экстремальных значений эффективности разделения не представляло особого интереса. Однако практика ставила бесчисленные задачи, которые целесообразно было решать на заполненных колонках, причем часто имела значение разделительная способность колонки. Необходимо придерживаться некоторых правил при изготовлении и производстве высокоэффективных хроматографических колонок. [c.68]

    Величина 2 характеризует разделительную способность колонки только для конкретной проблемы разделения, т. е. относительно последнего хроматографического пика. [c.70]

    НИЗКОКИПЯЩИХ компонентов разделительная способность хуже. Такая зависимость проявляется тем отчетливее, чем выше температура колонки она определяет границы применимости хроматографических колонок в изотермических условиях. Чтобы увеличить разделительную способность колонки по отношению к каждому компоненту, целесообразно применять хроматографию с программированием температуры, которая будет обсуждена ниже. [c.71]

    Если главным является не достижение более высокой разделительной способности, а радикальное сокращение времени анализа, надо руководствоваться правилами, приведенными в разд. 8.3. Скотту (1960) удалось разделить смесь 15 углеводородов (от изобутана до метилциклогексана) за 80 сек. Он достиг при этом 5000—10 ООО теоретических тарелок. Скотт использовал в качестве хроматографической колонки нейлоновый капилляр длиной 21 м, содержащий 8 мг апиезона А. Ширина пика для н-бутана составляла менее [c.71]

    Аналитическая практика ставила перед газовой хроматографией все более сложные проблемы разделения, решение которых требовало применения высокоэффективных хроматографических колонок. Чешир и Скот (1958), используя известные к тому времени теоретические закономерности, подобрали сорбент, размеры хроматографических колонок и рабочие условия таким образом, что была достигнута высокая разделительная способность, соответствующая 30 ООО теоретических тарелок. На этих колонках впервые было тогда проведено газохроматографическое разделение и- и м-ксилолов. Одновременно эти опыты выявили возможные границы дальнейшего повышения эффективности. [c.311]

    Наряду с возможностью использования полярных неподвижных фаз или адсорбентов известное преимущество капиллярных заполненных колонок состоит в том, что для них максимально допустимая величина пробы (10—20 мг) несколько больше, чем для обычных капиллярных колонок. Правда, из-за высокого перепада давления (0,2—1,5 ат на 1 л колонки) длина колонки ограничена несколькими метрами. Но, несмотря на это, можно получить хорошие результаты в отношении разделительной способности, отнесенной ко времени. Хотя такие хроматографические колонки на практике считают капиллярными колонками и хотя они требуют при эксплуатации таких же приспособлений (делитель потока в дозирующем устройстве, высокочувствительный детектор), их лучше рассматривать как заполненные колонки чрезвычайно малого диаметра, а не как капиллярные колонки. Свободное поперечное сечение, которое является характеристикой капиллярных колонок, здесь не указывается. Внутреннее пространство капиллярной трубки, которая может иметь капиллярный диаметр (как правило, 0,2—1 мм), заполнено частицами, диаметр которых равен /5— /3 внутреннего диаметра трубки. [c.335]

    Открытые колонки внутренним диаметром около 1 мм — мы называем их широкими капиллярными колонками — принадлежат по своей разделительной способности к истинным капиллярным колонкам. Они оказались эффективней заполненных колонок обычного диаметра (4—6 мм). Допустимое количество пробы значительно выше, чем у истинных капиллярных колонок. Количество пробы составляет примерно 1 мкл, и можно обойтись без применения делителя потока (ср. разд. 5.3.2). При больших количествах пробы проще применять другие физикохимические методы (как, нанример, масс-спектрометрию) для идентификации хроматографических пиков. Наконец, при больших диаметрах удобнее изготовлять и очищать колонки, а также наносить неподвижную фазу. При умеренных требованиях к эффективности разделения широкие капиллярные колонки можно рассматривать как наиболее удобный тип колонок. [c.336]

    Приведенные уравнения показывают, что разделительная способность хроматографической колонки является функцией большого числа параметров, влияющих на эффективность проведения анализа. Умение управлять этими параметрами позволяет экспериментатору расширить возможности применения газовой хроматографии для решения различных специальных задач, в том числе задач, связанных с изучением и совершенствованием процессов горения. [c.99]

    Как правило, разделительная способность хроматографической колонки зависит в значительной степени от качества ее наполнения. Наполнение должно быть равномерным, чтобы при прохождении газа-носителя не образовывались каналы в местах наименьшего сопротивления. В случае прямых или и-образных хроматографических колонок равномерное наполнение достигается постукиванием или при помош,и вибратора. Спиральные колонки можно наполнять перед свертыванием в спираль. Концы наполненных хроматографических колонок закрывают кусочками стеклянной ваты. С остальными частями аппаратуры колонка соединяется при помош,и силиконового каучука или тефлона, стеклянными или металлическими шлифами металлические колонки соединяются нарезными концами или накидными гайками с металлическими капиллярами. [c.495]

    Возможности этого метода Мартин [1811 обсуждал еще в 1956 г. Другие исследователи [117, 2061 описали различные устройства для циркуляционной газовой хроматографии. В этом случае газовая смесь, выходящая из хроматографической колонки, снова возвращается в нее, и эта операция продолжается до тех пор, пока не будет достигнуто заданное разделение смеси. Колонку обычно составляют из двух полукругов, круговой ток газа-носителя осуществляется при помощи насоса. Этот способ позволяет использовать короткие колонки, повышать нх разделительную способность, а также работать с летучими неподвижными фазами. [c.519]

    Из рассмотренного следует, что теория тарелок позволяет рассчитывать одну из важнейших характеристик хроматографических колонок — высоту эквивалентной теоретической тарелки, или, иными словами, разделительную способность колонки. [c.145]

    А. А. Жуховицкий и Н. М. Туркельтауб [7] вводят понятие критерия разделения, при помош,и которого также возможно характеризовать разделительную способность хроматографической колонки и рассчитывать оптимальные параметры опыта.  [c.145]

    Для упрощений состава исследуемой смеси сульфидов часть ее (80 мл) была разогнана на стеклянной колонке разделительной способностью, эквивалентной 25теоретическим тарелкам, при остаточном давлении 50 ммрт. ст. на фракции объемом по 1—2 мл, каждая из которых была подвергнута газожидкостной хроматографии. Из Полученных узких фракций были выделены препаративно отдельные сульфиды, образующие на хроматограмме исходной смеси большие четкие. пики. Для этой цели использовалась хроматографическая колонка длиной 450 см  [c.158]

    Широко используются различные известные варианты хроматографии, в том числе и наиболее распространенный — жидкостноадсорбционный. На рис. 63, U—г изображены схемы аппаратурного оформления колоночной хроматографии. Отношение диаметра колонки к ее высоте составляет 1 10, 1 15, а количество сорбента берут в 50 100 раз больше, чем количество разделяемой смеси. В качестве неподвижной фазы в жидкостно-адсорбционном варианте чаще всего применяют оксид алюминия различной активности или силикагель с размером гранул 100—150 или 150—200 мкм. С уменьшением размеров гранул разделительная способность сорбента возрастает, однако одновременно возрастает и гидродинамическое сопротивление всей колонки. Для ускорения хроматографического процесса элюент подают под давлением (рис. 63, д). [c.59]

    Из соотношений (1) — (3) можно определить, произойдет ли разделение компонентов. Однако величины Ai и ст зависят от такого большого числа внешних условий, что на их основе нельзя оценить разделительную способность хроматографической колонки. Заменим Ai на 2 — или 2 — tdri и отнесем все величины к времени удерживания или приведенному временп удерживания t , так что, нанример, равенство (2) примет вид [c.30]

    Следующий пример иллюстрирует важность включеиия продолжительности анализа в оценку хроматографических колонок. Вместе с тем он показывает, что связь разделительной способности и продолжительности анализа пока не удается представить математическим выражением. [c.63]

    В последние годы все шире применяют капиллярные хроматографические колонки [66, 91]. В большинстве случаев это капилляры без набивки длиной 20—200 м с внутренним диаметром 0,1—0,5 мм. Они изготавливаются из стекла [64, 66], пластических масс [217] и т. д. Внутренняя поверхность капилляра покрыта пленкой неподвижной фазы, на которой и происходит процесс разделения. Высокое сопротивление капиллярной колонки компенсируется небольшим расходом газа-носителя (приблизительно 0,5 мл1мин). Поэтому образцы веществ, разделяемых на капиллярной колонке, должны быть очень малы (приблизительно 2—100 мкг). Преимущество капиллярных колонок заключается в их исключительно высокой разделительной способности, которая достигает сотен тысяч теоре- [c.495]

    В капиллярах, загруженных стеклянными шариками или частицами силикагеля, ЭОП не должен зависеть от диаметра частиц, и направление потока в загруженном капилляре должно быть таким же, как и в пустом. При этом нет необходимости в применении очень маленьких частиц (с диаметром около 1 мкм или даже меньше) или длинных колонок, как при хроматографических методах. Поэтому метод ЭХ вызывает все возрастающий интерес, так как он сочетает селективность ВЭЖХ с высокой разделительной способностью КЭ. Благодаря применению непористых частиц можно исключить влияние диффузии в поры на уширение полос или пиков. [c.10]

    ГО разделяемого материала крайне необходима в промышленных процессах. Но использование метода ЖХ для разделения больших количеств сопряжено с определенными трудностями. Довольно ограниченная емкость хроматографических сорбентов означает, что чрезмерное увеличение нагрузки колонки ухудшает ее разделительную способность. В то же время размеры хроматографической колонки нельзя увеличивать до бесконечности, поскольку это приводит к возникновению других проблем, таких как проблема нанесения пробы, появление нежелательных мертвых объемов и т. д. В хроматографии всегда необходимо находить компромиссные решения. Изложенная ситуация часто изображается схемой, приведенной на рис. 9.1. Этот треугольник показывает, что если мы хотим увеличить емкость, то жертвуем скоростью и(или) разрешением. В общем случае, для того чтобы работать в линейной области изотермы сорбции, количество вещества, вводимого на колонку с обычной емкостью, не должно превышать 1 мг на 1 г сорбента. Следовательно, на препаративной колонке, содержащей 1 кг сорбента, можно разделить без заметного ухудшения ее разделительной способности пробу, масса которой не превышает 1 г. Вводимое количество можно увеличить, но только до такого уровня, при котором эффективность колонки и ее разрешение еще обеспечивают необходимый выход продукта желаемой оптической чистоты. Табл. 9.1 дает представление о величине пробы для колонок различных размеров. [c.226]

    Газовая хроматография (ГХ) представляет собой метод разделения, в котором в качестве подвижной фазы используется газ. Компоненты образца, анализируемого этим методом, должны образовывать с подвижной фазой, так называемым газом-носителем, газовую смесь. С помощью газовой хроматографии можно анализировать вещества, парциальное давление которых при температуре хроматографической колонки составляет не меньше 1 мм рт. ст. Вещества должны быть химически устойчивыми и термостабильньши. В настоящее время газовая хроматография является одним из цаиболее распространенных аналитических методов. Этот метод нашел широкое применение в фармации и клинической биохимии. К достоинствам ГХ относится высокая разделительная способность, чувствительность и быстрота анализа. ГХ можно использовать и в препаративных целях для выделения индивидуальных веществ. [c.142]


Смотреть страницы где упоминается термин Хроматографическая колонка, разделительная способность: [c.94]    [c.35]    [c.156]    [c.71]    [c.446]    [c.446]    [c.227]   
Руководство к практическим занятиям по радиохимии (1968) -- [ c.144 ]




ПОИСК





Смотрите так же термины и статьи:

Колонка хроматографическая

Колонки разделительные



© 2025 chem21.info Реклама на сайте