Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Применение и свойства винипласта

    Применение и свойства винипласта [c.109]

    Термопластичные свойства винипласта, полиэтилена, полиизобутиленов позволяют применять сварку для соединения листованных м,атериалов. Введение же в практику специальных методов сварки термопластов открыло широкие возможности применения этих материалов в ряде областей. [c.97]

    Одно из ценных свойств винипласта — способность его формоваться при 130—140°. При применении листов толщиной свыше 8 мм нагревание производят при 150°. Применение более высоких температур может вызвать расслоение листов материала на тонкие пленки, из которых он спрессован. Разогрев винипласта должен быть равномерным и продолжительным так, например, выдержка в тепловой камере листов толщиной 2—10 мм составляет 5—20 мин. [c.435]


    В последнее время находят применение трубы из пластических масс. Они отличаются от стальных стойкостью к коррозии, небольшой массой и рядом других преимуществ (высокими диэлектрическими свойствами, малым коэффициентом трения и др.). Однако их прочностные качества низки, особенно при повышенных температурах. Например, полиэтиленовые трубы нельзя применять при температуре выше -ь50°С. Промышленность выпускает трубы из винипласта (для температур до 60°С и давления до 0,6 МПа), полиэтилена, полипропилена, графитопласта АТМ-1, фторопласта - 4. [c.105]

    Несмотря па весьма высокие антикоррозионные и механические свойства, применение винипластовых труб ограничивается недостаточной морозостойкостью винипласта (—10°), что осложняет использование его для наружных трубопроводов, так как в этом случае прокладку труб приходится вести в общих коробах с другими трубопроводами, по которым транспортируются горячие газы, пары и жидкости. [c.188]

    Во многих случаях неметаллические материалы обладают более высокой коррозионной стойкостью, чем металлы. Поэтому они находят широкое применение при защите металлического оборудования от коррозии, а также как конструкционные материалы. Область применения того или иного материала определяется его физико-химическими и технологическими свойствами, химической стойкостью, термостойкостью и т. п. Так, по сравнению с винипластом, для которого предельно допустимая рабочая температура 40—50° С, фаолит можно эксплуатировать до 130—150° С, а в некоторых случаях даже при более высоких. Фаолит сравнительно [c.61]

    Трубы из полиэтилена по своим свойствам и применению близки к винипластовым. Полиэтилен по сравнению с винипластом обладает более высокой ударной прочностью. Трубы из полипропилена применяют до 100° С. [c.317]

    Винипласт — материал, обладающий высокой химической стойкостью в различных агрессивных средах — кислотах, растворах щелочей, солей и т. п. Винипласт отличается сравнительно высокими физико-механическими и электроизоляционными свойствами. Ограниченность применения винипласта определяется тем, что он при температуре —20° С становится весьма хрупким, а при температуре выше 60° С размягчается. [c.138]

    При применении винипластовых труб необходимо учитывать ряд ограничений и некоторые особенности монтажа трубопроводов, вытекающих из свойств материала. Прочность винипласта Б большой степени зависит от температуры. Так, удельная ударная вязкость винипласта при +20°С, равная 150 кГ см/см-, падает с понижением температуры и при — 20°С составляет 30 кГ см/см . Поэтому эксплуатационные достоинства вини- [c.215]


    Свойства и применение винипласта [c.5]

    Пластические массы в последнее время находят все более широкое распространение при изготовлении технологических трубопроводов в химической и других отраслях промышленности. Пластическими массами называют материалы, получаемые на основе искусственных и естественных смол и их смесей с другими веществами, способные формоваться (прессованием, литьем под давлением) и сохранять приданную им форму. Наиболее распространенными пластическими массами являются винипласт, фаолит ц текстолит. Помимо этих пластмасс, применяются асбовинил, полиизобутилен, полиэтилен. К положительным свойствам пластмасс, обеспечившим их широкое применение, относятся сравнительно небольшой удель- [c.24]

    За последние годы в практике антикоррозийных работ широкое применение находят химически стойкие материалы органического происхождения, получаемые искусственным путем пластические массы, резина, углеродистые и лакокрасочные материалы. Химическая стойкость и физико-механические свойства этих материалов зависят от их состава и внутреннего строения вещества. Некоторые из органических материалов обладают устойчивостью во всех агрессивных средах, за исключением концентрированных азотной и серной кислот (винипласт, полиэтилен) другие материалы устойчивы лишь в кислых средах (фаолит, текстолит). К достоинствам многих химически стойких материалов органического происхождения следует отнести их способность свариваться, склеиваться, подвергаться различным видам механической обработки сверлению, штампованию, формованию, прессованию, распиловке и др. Недостатками органических Х1[мически стойких материалов являются их невысокая теплостойкость и в некоторых случаях — хрупкость. [c.52]

    Применение винипласта для поделки всевозможных изделий сопряжено с различными видами обработки, — резанием, гнутьем, склеиванием, горячим формованием и сваркой, которые должны выполняться при определенных режимах с учетом свойств материала. [c.3]

    Беспрутковая сварка основана на свойстве винипласта прессоваться в разогретом состоянии при определенном давлении. Так, например, если концы двух отрезков винипластовых труб тщательно подогнать друг к другу, разогреть до 180—200°С, а затем прижать их по месту соединения, то они сварятся между собой. Преимущество этого способа сварки перед сваркой с применением сварочных прутков заключается в значитель- [c.260]

    Принцип беспрутковой сварки основан на свойстве винипласта прессоваться в разогретом состоянии при определенном давлении. Этот способ позволяет сваривать листы значительной толщины без применения присадочного материала. [c.200]

    Бумага — тонкий иолокнистый материал из прочно переплетенных между собой волокон целлюлозы. В настоящее время известно около 200 различных видов бумаги. Кроме обычного применения бумага может использоваться для и 1-готоБления многих предметов и изделий. Так, из бумаги и битума можно делать трубы, заменяющие асбестоцементные, металлические и керамические. Обычные обои, покрытые топкой поливинилацетатной пленкой, можно мыть даже теплой водой (моющиеся обои). Свойства бумаги можно качественно изменить и намного улучшить, если ее обработать синтетическими полимерами (мочевиноформальде-гидными, фенолоформальдегидными, полиэтиленом и др.). Такая бумага может служить в качестве конструкционного материала, использоваться в строительном деле для производства сухой штукатурки, обивки стен, изготовления обоев различной расцветки, кровельных материалов (толя, рубероида), внутренних перегородок и т. д. Хорошо известен материал под названием фибра, для получения которого крупнопористую бумагу обрабатывают концентрированным раствором хлористого цинка. Фибра по сравнению с текстолитом, целлулоидом, винипластом и оргстеклом имеет более высокие эксплуатационные показатели. При пропитке картоня битумом образуется водонепроницаемый, кислотоупорный и теплоизоляционный материал — рубероид, широко применяемый в качестве кровельного материала. [c.254]

    Конструкция полов иа основе бетона пли железобетона в производственных номещениях и деревянные полы в лабораториях должны быть подвергнуты специальной защите от ртути. Это может быть достигнуто применением одного пз нижеперечисленных материалов винипласта, релина (кроме пожароопасных участков), полихлорвинилового пластиката п др. по согласованию с органами санитарного надзора. Указанные материалы, помимо устойчивости по отношению к ртути, характеризуются диэлектрическими свойствами, что повышает их положительные качества. У стен ртутенепроницаемые покрытия должны прпиодниматься на 10 см и крепиться к ним заподлицо. [c.213]

    Для антикоррозионной защиты крупногабаритного оборудования, работающего в условиях агрессивных сред в производствах минеральных солей (концентратов, промывных башен и пр.), применяют покрытие из кислотоупорных плиток и других кислотоупоров, а также кислотоупорные цементы (кварцевый, кремнефтористый и пр.). Для защиты химической аппаратуры и строительных конструкций применяются плитки и изделия из стеклокристаллического материала, кислотоупорный клинкерный кирпич, керамические плитки и т. п. В химической промышленности распространены эмалевые покрытия. В настоящее время освоены ситталевые эмали, обладающие высокими механическими и термическими свойствами. Широкое применение для антикоррозионных целей имеют материалы из пластмасс винипласта, полиэтилена, фаолита, текстолита и пр. Одним из наиболее стойких материалов является фторопласт, обладающий коррозионной стойкостью ко всем кислотам и щелочам. Для изготовления теплообменной аппаратуры, работающей в условиях воздействия агрессивных жидкостей и газов, применяют графит, графолит и другие графитовые материалы. Для защиты аппаратуры и строительных конструкций от коррозии применяются специальные химически стойкие лакокрасочные материалы на основе перхлорвиниловой смолы, поливинилхлорида и его полимеров, лаков, эпоксидных смол и т. д. [c.87]


    Для изготовления полимерной выдувной упаковки используются термопласты полиэтилен, полипропилен, поливинилхлорид, полистирол, поликарбонаты, полиформальдегид и некоторые другие (табл. 7.2) [4 6—8]. На первом месте по объему использования находится полиэтилен, который обладает хорошими технологическими и эксплуатационными свойствами (ударостойкостью, морозостойкостью и др.). Полиэтилен хорошо перерабатывается, а его стоимость самая низкая из в ех многотоннажных полимеров. Второе место занимает поливинилхлорид, и особенно композиции его жесткой модификации (винипласты), благодаря формоустойчивости, возможности получения высокопрозрачной упаковки, хорошей адгезии красок к поверхности [2 3]. Недостатком композиций на основе ПВХ является хрупкость, особенно при низких температурах, поэтому не рекомендуется изготовлять на их основе упаковку большого объема (свыше 5,0 дм ). Кроме того, переработка ПВХ-компаундов требует применения специальных типов оборудования. Использование полипропилена позволяет получать прочную тонкостенную экономичную упаковку, однако низкая морозостойкость значительно сужает область его применения. Другие типы термопластов применяются значительно реже и только для специальной выдувной упаковки. [c.92]

    К первой группе относятся полихлорвиннловые пластмассы (винипласт, винидур). Ко второй группе—фенолформальдегидные пластмассы с минеральными наполнителями (фаолит, бакелитовые пресс-порошки). В качестве антикоррозиопных материалов наиболее широко применяется фаолит, текстолит, винипластовый пластикат. Применение полимерных материалов открывает путь к дальнейшему развитию и прогрессу народного хозяйства. Они перестали быть заменителями природных веществ, а являются новыми веществами, обладающими ценными свойствами, зачастуто отсутствующими у природных материалов. [c.11]

    Разновидностью термопластмасс является винипласт. Он обладает высокой химической стойкостью в различных кислотах, щёлочах н растворах солей, а также в других химических реагентах при температурах до 120 - Высокие антикоррозионные свойства и механическая прочность винипласта открывают новую область применения его как термопластического материала в химической и других отраслях промышленности, для изготовления и облицовки аппаратуры и отдельных деталей с помощью сварки. [c.146]

    Размеры прокладки зависят от размеров и конструкции фланцевого соединения, материал прокладки — от свойств рабочей среды, давления и температуры. Прокладки подразделяются на не-метал-лические ( мягкие ) и металлические. К первым относятся прокладки из резины, картона прокладочного целлюлозного, паронита, фибры, фторопласта, винипласта, полиэтилена и пластиката поливинилхлоридного. Области применения материалов для неметаллических прокладок приведены в табл. 9.52, 9.53 и 9.55. Прокладки из неметаллических материалов наиболее часто имеют вид плоского кольца. Резиновые прокладки могут изготовляться из круглого шнура. Металлические прокладки могут иметь плоское, зубчатое (гребенчатое),овальное или восьмигранное сечение. Применяются также тороидальные металлические прокладки в вИде кольца из металлической трубки. Прокладки из гофрированной металлической ленты и спиральдю навитые прокладки из металлической ленты гнутого профиля имеют повышенную упругость по, сравнению со сплошными. Материалы для металлических прокладок приведены в табл. 9.54 и 9.55. Отдельную группу составляют [c.282]

    Высокая химическая стойкость полиэтилена на холоду и при нагревании в сочетании с эластичностью и легкостью изготовления различных деталей определяют его применение в качестве коррозионностойкого материала, а благодаря хорошим диэлектрическим и механическим свойствам он широко применяется в электропромышленности. Подобно винипласту, полиэтилен может быть использован как самостоятельный конструкционный материал для изготовления трубопроводов, небольшой емкостной аппаратуры, резервуаров для перевозки агрессивных жидкостей. Йз полиэтилена (иногда в смеси с полиизобутиленом) изготовляют также прокладки для фяанценых соединений. [c.270]

    Анализируя результаты исследований по гигиенической оценке воды, опресненной электроиопитным методом при повышенной плотности тока и низкой минерализации исходной воды, и сравнивая их с соответствующими данными, полученными при плотности тока порядка 5—25 а/да , можно заключить, что вынос органических веществ не увеличивается. Применение винипласта и полипропилена в качестве конструктивного материала для рабочих рамок также не вызывает никаких неблагоприятных изменений свойств опресненной воды. [c.270]

    Дешевизна и доступность сырья, высокая химическая стойкость, хорошие физико-механические и электроизоляционные свойства, возможность применения без специальной подготовки поверхности обес 1ечили поливинилхлориду самое широкое использование в технике антикоррозионной зашиты. На его основе изготовляют винипласт, используемый как коррозионно-стойкий конструкционный материал, и поливинилхлоридный пластикат, применяемый в виде пленок и листов как самостоятельное защитное покрытие и в качестве непроницаемых подслоев в облицовках и футеровках. [c.69]

    На стадии лабораторных разработок анализ возможных путей решения задачи по составу рецептуры может быть проведен на основании сведений о свойствах компонентов ПВХ-композиций и об областях их применения, причем следует иметь в виду сложную взаимосвязь между требуемыми показателями и критериями оптимизации рецептуры. Для решения задачи, касаюш ейся способа переработки, используются соответствуюш ие литературные данные и личный опыт. Например, требуется разработать рецептуру изоляционного ПВХ-пластиката с морозостойкостью (М) не ниже —50° С и удельным объемным электрическим сопротивлением (р ) не менее ом-см. Из литературы известны классы пластификаторов, которые обеспечивают хорошую морозостойкость , и классы стабилизаторов, которые обеспечивают высокие показатели диэлектрических свойств пластикатов Задача сводится к рациональному выбору пластификаторов и стабилизаторов и к определению их оптимальных концентраций. В этом случае за критерий оптимизации может быть принят один из двух заданных нормированных показателей (М или р ). Теперь предположим, что требуется разработать рецептуру винипласта с пределом прочности при растяжении а не ниже 550 кгс/сле и ударной вязкостью U не ниже 100 кис-см. В этом случае характеристики а ш U (так же, как М и р в иредыду-ш ем примере) изменяются антибатно. В литературе имеется достаточно сведений об ингредиентах, способствуюш их повышению ударной вязкости. Однако сведений о том, какие ингредиенты следует вводить для повышения предела прочности при растяжении, недостаточно для решения задачи В этом случае ни одна из заданных характеристик не может быть использована в качестве оценочного критерия по крайней мере до получения необходимых сведений о влиянии добавок на величину ст. Логически и количественно обоснованная взаимосвязь между прочностными характеристикамп ПВХ и его стабильностью дает основание предполагать, что в ка- [c.398]

    Существенным недостатком поливинилхлоридных пластикатов являётся хрупкость, возникающая при охлаждении, и срав ительно невысокая температура размягчения. При перегреве же пластикат разлагается с выделением хлористого водорода, вызывающего коррозию металлов. Под влиянием света пластикаты темнеют. Тем не менее сравнительно высокие электроизолирующие свойства, атмосферостойкость, влагонепрони-цаемость, бензино- и маслостойкость, негорючесть, высокая эластичность и доступность винипластов обеспечивают им широкое применение. [c.70]


Смотреть страницы где упоминается термин Применение и свойства винипласта: [c.111]    [c.324]    [c.284]    [c.197]   
Смотреть главы в:

Технология пластических масс Изд.3 -> Применение и свойства винипласта

Технология пластических масс Издание 3 -> Применение и свойства винипласта




ПОИСК





Смотрите так же термины и статьи:

Винипласт

Винипласт свойства



© 2025 chem21.info Реклама на сайте