Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Винипласт свойства

    Свойства винипласта. Винипласт обладает высокой химической стойкостью к действию кислот, щелочей, бензина, масел, спиртов. Он является антикоррозионным материалом в интервале температур от О до 60 °С. Винипласт имеет хорошие электрические свойства, легко подвергается различной механической обработке (формованию, сварке). [c.30]

    Недостатки винипласта — низкие термостабильность и морозостойкость. При длительной эксплуатации, и особенно при изменении температуры, механические свойства винипласта ухудшаются. Для их улучшения ПВХ совмещают на вальцах с каучуками или хлорированными полиолефинами. Ударная вязкость таких материалов повышается в [c.30]


    Основные показатели свойств винипласта приведены ниже  [c.30]

    В последнее время находят применение трубы из пластических масс. Они отличаются от стальных стойкостью к коррозии, небольшой массой и рядом других преимуществ (высокими диэлектрическими свойствами, малым коэффициентом трения и др.). Однако их прочностные качества низки, особенно при повышенных температурах. Например, полиэтиленовые трубы нельзя применять при температуре выше -ь50°С. Промышленность выпускает трубы из винипласта (для температур до 60°С и давления до 0,6 МПа), полиэтилена, полипропилена, графитопласта АТМ-1, фторопласта - 4. [c.105]

Рис. 46, Зависимость механических свойств винипласта от температуры Рис. 46, <a href="/info/927003">Зависимость механических свойств</a> винипласта от температуры
    Поливинилхлорид получают суспензионной или эмульсионной полимеризацией винилхлорида. В зависимости от количества введенного пластификатора и характера переработки из поливинилхлорида можно получить материалы с самыми разнообразными свойствами. Из него готовят листовые материалы и трубы (винипласт), пленки, заменители кожи, перхлорвиниловую смолу и т. д. В табл. 31 приведены некоторые требования к качеству суспензионного и эмульсионного поливинилхлоридов. [c.142]

    Винипласт отличается большой химической стойкостью, высокими диэлектрическими показателями и механической прочностью. Эти свойства позволяют подвергать винипласт различным видам механической обработки (прессованию, штамповке, распиливанию, фрезерованию и др.). [c.386]

    Винипласт обладает хорошими электроизоляционными и механическими свойствами, абсолютно ртутенепроницаем и является одним из наилучших материалов для покрытия полов, лабораторных столов, рабочей поверхности вытяжных шкафов и т. д. Устойчив к щелочам и кислотам средних концентраций к воде менее устойчив. Разъедается концентрированными кислотами и особенно 40% азотной кислотой, олеумом и т. д. Швы между листами винипласта сваривают при помощи специальных горелок или высокочастотной сварки. [c.227]

    Винипласт склонен к ползучести и набуханию в воде, при этом его механические свойства снижаются. [c.63]

    Хорошими защитными свойствами отличается пластическая масса винипласт. Он устойчив в серной кислоте концентрации до 90%, соляной — всех концентраций, азотной—до 40%, в щелочах до 50%, в растворах солей, воде, смазочных и растительных маслах. Винипласт не пригоден для работы в среде ароматических и хлорирован- [c.79]


    Химические свойства винипласта [c.80]

    ОСНОВНЫЕ СВОЙСТВА ВИНИПЛАСТА и ПЛАСТИКАТА [c.621]

    Физика-механические и диэлектрические свойства пластиката и винипласта [c.110]

    Физико-химические свойства винипласта приведены в табл. 13. 9, а стойкость его в различных средах в табл. 13.10. [c.600]

    Пластикат является продуктом хлорвиниловой смолы. В отличие от винипласта пластикат обладает большей пластичностью и лучшими механическими свойствами. Пластикат очень плотно прилегает к поверхности ванны. Это свойство позволяет проводить иагрев ванн через пароводяную ру- [c.129]

    Винипласт — термопластичный м.атериал, состоящий в основном из макромолекул поливинилхлорида с молекулярной массой от 18 до 120 тыс., к которому для предотвращения термической деструкции добавлен стабилизатор. Винипласт удачно сочетает антикоррозионную способность с хорошими физико-механическими свойствами. Он не подвергается разрушению в минеральных кислотах (за исключением сильных окислителей), щелочах, в солевых растворах, во многих органических растворителях, кроме ароматических и хлорированных углеводородов. Ценным свойством винипласта является его пластичность прн нагревании, которая позволяет легко изготавливать материалы, детали и конструкции любой формы штампованием, выдавливанием и гнутьем, так же как из металлов. К тому же его можно резать, строгать, сверлить и полировать. Изделия из винипласта можно сваривать токами высокой частоты и склеивать специальными клеями. К недостаткам относятся малая термическая устойчивость (выше 50 °С), набухаемость в воде, низкая ударная вязкость, большой коэффициент термического расширения и постепенная деформация под нагрузкой. [c.142]

    Винипласт,представляет собой твердый упругий продукт с высокой прочностью на удар и сравнительно хорошими механическими свойствами. Из массы, полученной вальцеванием порошкообразного полимера со стабилизаторами, формуют листы, пленки, трубы, вентили, детали насосов и т. д., которые могут эксплуатироваться при температурах, не превышающих 50—60°С. Винипласт сваривается, склеивается и хорошо перерабатывается механическими методами им можно футеровать электролизные ванны, резервуары кислот и другие сосуды. [c.292]

    Эффективным моющим средством является хромовая смесь (раствор бихромата калия в серной кислоте). Посуду сначала ополаскивают водой, наливают хромовую смесь до /з /4 объема сосуда и осторожно смачивают внутренние стенки. Сливают хромовую смесь в емкость, где она хранится, и через несколько минут промывают сосуд водопроводной и дистиллированной водой. В пипетки хромовую смесь набирают только при помощи груши. Хранят ее в фарфоровых стаканах с крышками или в колбах из химически стойкого стекла, помещенных в сосуд из кислотоупорного материала, например, винипласт. После многоразового использования смесь теряет свои свойства, окрашивается в темно-зеленый цвет. Ее сливают в специальную тару. [c.6]

    При совместной пластикации СКН и ПВХ при повышенных температурах образуются привитые сополимеры ПВХ с СКН [95], которые по ударной вязкости превосходят в 2—4 раза винипласты из поливинилхлорида. При изучении электрических свойств изделий, изготовленных на основе продуктов совместной пластикации ПВХ с СКН, наблюдается рост электропроводности, что указывает на образование ионных структур привитых сополимеров. На возникновение химических связей между полимерами указывают результаты исследования характеристической вязкости механической смеси ПВХ с СКН-18, СКН-26 и СКН-40 и соответствующих продуктов пластикации. [c.179]

    Физико-механические свойства изделий из винипласта приведены в табл. 25. [c.543]

    Физико-механические свойства изделий из винипласта и фторопласта-4 [c.544]

    Физико-механические, теплофизические и электрические свойства винипластов [c.49]

    Показатели физико-механических свойств винипластов приведены ниже  [c.49]

    Винипласты часто используются как конструкционный материал, особенно в химической промышленности. Однако следует учитывать, что при температуре 60°С и выше его прочностные свойства резко ухудшаются при низких температурах повышается хрупкость винипластов. Данные о зависимости показателей физико-механических свойств от температуры приведены в таблице. [c.49]

    Трубы из полиэтилена. По своим свойствам и ирименению они близки к винииластовым. Полиэтилен по сравнению с винипластом обладает более высокой ударной прочностью. [c.256]

    В винипласте удачно сочетаются химическая стойкость во многих агрессивных средах со сравнительно благоприятными физико-механическими и технологическими свойствами. Винипласт практически стоек почти во всех минеральных кислотах, за исключением силыю окислительных (азотной кислоты высокой концентрации, олеума и др.), стоек в щелочах, растворах солей любых концентраций, нерастворим во мгюгих органических растворителях, за исключением ароматических н хлорированных углеводородов. Физико-механические свойства винипласта приведены ниже. [c.412]


    Высокая кнслото- и солестойкость поливинилхлорида удачно сочетается с твердостью, упругостью и хорошей механической прочностью. Ниже приведены свойства винипласта—конструкционного материала, получаемого обработкой (на вальцах и ка- мандрах, иногда с последующим выдавливанием) поливинилхлорида с добавкой 4—5% стабилизатора и до 2% сма.зки  [c.267]

    Бумага — тонкий иолокнистый материал из прочно переплетенных между собой волокон целлюлозы. В настоящее время известно около 200 различных видов бумаги. Кроме обычного применения бумага может использоваться для и 1-готоБления многих предметов и изделий. Так, из бумаги и битума можно делать трубы, заменяющие асбестоцементные, металлические и керамические. Обычные обои, покрытые топкой поливинилацетатной пленкой, можно мыть даже теплой водой (моющиеся обои). Свойства бумаги можно качественно изменить и намного улучшить, если ее обработать синтетическими полимерами (мочевиноформальде-гидными, фенолоформальдегидными, полиэтиленом и др.). Такая бумага может служить в качестве конструкционного материала, использоваться в строительном деле для производства сухой штукатурки, обивки стен, изготовления обоев различной расцветки, кровельных материалов (толя, рубероида), внутренних перегородок и т. д. Хорошо известен материал под названием фибра, для получения которого крупнопористую бумагу обрабатывают концентрированным раствором хлористого цинка. Фибра по сравнению с текстолитом, целлулоидом, винипластом и оргстеклом имеет более высокие эксплуатационные показатели. При пропитке картоня битумом образуется водонепроницаемый, кислотоупорный и теплоизоляционный материал — рубероид, широко применяемый в качестве кровельного материала. [c.254]

    Основными недостатками винипласта являются невысокая теплостойкость и низкая 5 даропрочность. С увеличением содержания пластификатора повышается морозостойкость материала, но понижается его механическая прочность и ухудшаются диэлектрические свойства. [c.606]

    Многие полимерные материалы обладают ценными химическими и физическими свойствами и успешно применяются в различных областях энергетической техники как конструкционные и электротехнические материалы. Для этой цели используются термопластичные и термореактивные полимеры. Из термопластичных полимеров широко применяют полиметилметакрилат (органическое стекло), полистирол, полиэтилен, винипласт (непластифицированный поливинилхлорид), полиизобутилен, капрон, фторопласт-4 (политетрафторэтилен), из термореактивных — фенопласты, получаемые на основе фенолоформаль-дегидной смолы аминопласты, получаемые на основе мочевино-формальдегидной смолы полиэфирные, эпоксидные и кремнийорганические полимеры. [c.337]

    Непластифицированный поливинилхлорид. Непластифицированный поливинилхлорид (винипласт), т. е. поливинилхло- рид, не содержащий пластификаторов,— твердый упругий материал. Предел прочности его на разрыв при 20° С 500—700 кгс1см , а относительное удлинение 10—15%. При повышении температуры предел прочности при растяжении постепенно снижается и растет растяжимость материала (рис. 46), а при возвратном понижении температуры эти свойства восстанавливаются. Иными словами, непластифицированный поливинилхлорид ведет себя как типичный термопластичный полимер. [c.139]

    Отдельные детали, выполненные из винипласта, соединяются в изделие методом прутковой сварки. Прутки для сварки изготовляют также из полихлорвинила. Футеруют металлические изделия листами из винипласта клеевым способом. Клеем служит раствор перхлорвиниловой смолы в метилен-хлориде. Ниже приведены физико-механические свойства вининласта. [c.796]

    Конструкция полов иа основе бетона пли железобетона в производственных номещениях и деревянные полы в лабораториях должны быть подвергнуты специальной защите от ртути. Это может быть достигнуто применением одного пз нижеперечисленных материалов винипласта, релина (кроме пожароопасных участков), полихлорвинилового пластиката п др. по согласованию с органами санитарного надзора. Указанные материалы, помимо устойчивости по отношению к ртути, характеризуются диэлектрическими свойствами, что повышает их положительные качества. У стен ртутенепроницаемые покрытия должны прпиодниматься на 10 см и крепиться к ним заподлицо. [c.213]

    При проектировании конструкций из полиолефииов, винипласта, пентапласта, поликарбонатов и фторопластов учитывают их физико-химические свойства  [c.194]

    Невысокие прочностные свойства термопластов не позволяют изготавливать из них крупногабаритное оборудование. Такое оборудование целесообразно изготавливать из бипластмасс. Стеклопластик наносят на поверхность термопласта накаткой стекломатериала (контактное формование) или напылением стекложгута. В случае винипласта технология изготовления включает пескоструйную или дробеструйную обработку его поверхности и последующую обработку дихлорэтаном. После обезжиривания на поверхность наносят адгезионную композицию, например клей ПЭДБ. Клей наносят в два слоя сушку грунтовочного и основного слоев проводят 2—3 ч и 20—25 мин соответственно. Стеклоармирующие материалы сушат 3 сут в сушильной камере до влал ности не более 0,2 % при 40—50 °С, после чего прокаливают в течение часа при 180 С (для удаления замасли-вателя) и производят их раскрой с припуском на перекрытие швов не менее 50 мм. [c.213]

    Основные свойства винипласта предел прочности при растяжении — 600 кГ1см , при изгибе—1 200 кГ1см теплостойкость—60° С морозостойкость— минус 20° С теплопроводность—0,13 ккал1м ч град-, удельный вес—1,3 г см -, коэффициент линейного расширения—8,0- 10 . [c.63]

    Винипласт выпускается в виде пленки, листов, труб, стержней и других профилей и сварочного прутка для сварки винипласта (ТУ МХП425-54). Прочностные свойства винипласта меняются со временем и в еще большей степенц с змецецием температуры. Предел [c.121]

    Винипласт достаточно стоек во многих агрессивных средах и обладает хорошими физико-механическими свойствами. Применяется при температуре не выше 60—70 и не ниже мннус 20 °С. [c.337]

    Влияние условий сушки в средах с различным содержанием кислорода на свойства ПВХ и некоторые эксплуатационные характеристики материала на его основе изучено в [128]. Объектом исследования служил суспензионный ПВХ с молекулярной массой Мц = 1,245-105 и 1,15-10 . Образцы ПВХ с влажностью 25% сушили в термостатируемом шкафу в атмосфере воздуха, технического азота [5% (об.) кислорода] и в вакууме при остаточном давлении 10 кПа [содержание кислорода = 2% (об.)]. Для высушенных образцов ПВХ определяли насыпную плотность Рн и угол естественного откоса а, анализировали молекулярные характеристики, термическую стабильность и визуально оценивали цвет продукта. Из молекулярных характеристик оценивали число ненасыщенных Х(С=С), концевых и внутренних связей, а также блоков п полисопряженных (ППС) и двойных С=С-связей. Определяли также температуру начала разложения Тр , статическую ю термоста-бильносгь и динамическую термостабильность Тд (на пластографе Брабендера) порошка ПВХ при 175 °С. Термостойкость образцов прозрачного винипласта, изготовленных вальцево-прессовым методом при массовом соотношении ПВХ, стеарата кадмия, органического фосфита и эпоксидированного масла, равном 100 0,8 1,5 3,0, оценивали в статических условиях по термостабильности и цветостойкости Ц при 175 °С - по изменению цвета до почернения при выдержке в термокамере. Образцы сушили в интервале температур 60 - 140 °С не менее 2,5 ч. В интервале температур 60 - 100 °С все высушенные образцы были белого цвета, а пластины винипласта - прозрачными и имели одинаковый слегка желтоватый оттенок. Насыпная плотность высокомолекулярного ПВХ (Мг = 1,245-10 ) оставалась постоянной (рн = 0,38 г/см ), а низкомолекулярного (Mji = 1,15-10 ) - увеличилась от 0,4 до 0,47 г/см при всех условиях сушки, т.е. низкомолекулярный ПВХ более подвержен термоусадке при Т> Т . [c.92]

    Для образцов полимера, высушенных в интервале температур 100 -120 °С, отмечена тенденция снижения термостойкости и термостабильности порошка ПВХ и композиций. Заметно снижается Трп,Т( п, Тсв и Хдин при сушке образцов в любой среде уменьшается и цветостойкость винипласта. При сушке ПВХ в интервале 120 - 140 °С эти показатели практически восстанавливаются. Это можно объяснить тем, что при 100 °С из ПВХ с заметной скоростью начинает элиминировать НС1. Одновременно в полимере идет процесс образования двойных С=С-связей, являющихся активными центрами окисления и роста карбонилаллильных группировок, ответственных за термостабильность ПВХ. Дальнейшее возрастание температуры сушки приводит как к росту числа ППС, так и к повышению вероятности структурирования макромолекул. Это значит, что ПВХ, высушенный при 120 - 140 °С, представляет собой в некоторой степени сшитый полимер, в котором активные центры частично заполнены. Очевидно, что полимер и изготовленный из него винипласт будут иметь более высокую термостабильность, несмотря на ухудшение некоторых эксплуатационных свойств. [c.93]

    Для повышения физико-механических свойств винипласта его комбинируют с другими материалами. Слоистый поливинилхлорид получают совместным прессованием листа винипласта тол-. щиной 1 мм и листа пластиката толщиной 2 мм. Высокой механической прочностью отличается армированный поливинилхлорид, получаемый прессованием двух листов винипласта или [c.111]


Смотреть страницы где упоминается термин Винипласт свойства: [c.310]    [c.417]    [c.684]   
Технология пластических масс в изделия (1966) -- [ c.374 ]

Технология пластических масс Издание 2 (1974) -- [ c.112 ]

Справочник сернокислотчика Издание 2 1971 (1971) -- [ c.187 , c.188 ]

Синтетические полимеры и пластические массы на их основе Издание 2 1966 (1966) -- [ c.236 , c.242 , c.252 ]




ПОИСК





Смотрите так же термины и статьи:

Винипласт

Винипласт диэлектрические свойства

Винипласт механические свойства

Винипласт физико-механические свойства

Винипласт физико-химические свойства

Винипласт химические свойства

Применение и свойства винипласта

Прочностные свойства винипласта

Физико-механические свойства фаолита, текстолита и винипласта

Физико-механические, теплофизические и электрические свойства винипластов

Швы сварных соединений Допускаемые напряжения Механические свойства Условные изображения Условные обозначения винипласта Технические требовани



© 2025 chem21.info Реклама на сайте