Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Соединения, выделенные из растений

    Углерод углекислого газа служит основой всех образующихся органических соединений различных растений и животных. Остатки погибших организмов перерабатываются бактериями, в результате чего газы выделяются в атмосферу, а в осадочных отложениях появляется органическое вещество. Весь органический углерод, содержащийся в толщах осадочных пород, попал сюда, следовательно, из атмосферы. В свою очередь запас углекислого газа в атмосфере непрерывно пополняется на протяжении всей истории образования осадочных пород за счет поступления его из глубоких недр земли через вулканы и глубинные разломы. [c.77]


    Мир растений — исполинское производство высокомолекулярных соединений, в котором осуществляется биохимический синтез высших полисахаридов и лигнина. Катализаторами сложных процессов, приводящих к синтезу высокомолекулярных соединений в растениях, служат белки-ферменты исходным сырьем в синтезе углеводов является двуокись углерода, которая, будучи конечным продуктом окисления любых углеродсодержащих соединений, непрерывно выделяется в атмосферу. Единственным природным процессом, в котором двуокись углерода претерпевает обратное превращение в сложные органические соединения, является ее ассимиляция растениями. Таким образом поддерживается круговорот углерода и сохраняется его баланс на земном шаре. [c.12]

    Ингибиторы амилаз. История изучения ингибиторов амилолитических ферментов началась и неразрывно связана с исследованиями данного класса природных соединений в растениях. Первые сведения относятся к началу 30-х годов, когда в проростках гречихи было обнаружено нерастворимое в воде вещество, способное тормозить гидролитическое расшепление крахмала амилазой. Расширение исследований вслед за этим позволило выделить ингибиторы амилолитических ферментов из разнообразных растений (табл. I). Они присутствуют в запасающих органах, листьях, цветках, плодах, проростках разнообразных растений [80]. [c.215]

    Углеводсодержащие биополимеры репродуктивной ткани растений изучены заметно хуже, однако такого рода соединения выделены из пыльцы кукурузы сосны и крестовника . С присутствием этих веществ связаны, очевидно, аллергические реакции, вызываемые у человека пыльцой растений (сенная лихорадка). [c.604]

    Химия природных соединений — одна из наук, изучающих химический состав живой материи. Основная задача ее состоит в том, чтобы обнаружить, выделить в чистом виде и установить химическую структуру вещества, находящегося в том или ином живом организме — бактерии, беспозвоночном или позвоночном животном, грибе или высшем растении. Обычными объектами химии природных соединений служат растения, грибы и беспозвоночные. Именно эти организмы характеризуются способностью вырабатывать разнообразные по структуре и функциям неполимерные органические соединения. [c.10]

    Эфирные масла растений содержат преимущественно ароматические оксисоединения, альдегиды и кетоны, а также кислоты и их эфиры. Все эти соединения обладают специфическими запахами эфирных масел. Некоторые ароматические соединения выделяют из эфирных масел в индивидуальном состоянии и применяют [c.331]


    Эфирные масла растений содержат наряду с терпенами (стр. 348) ароматические оксисоединения, альдегиды, кетоны, кислоты и их эфиры. Некоторые ароматические соединения выделяют из эфирных масел и применяют для получения душистых веществ. Природные эфирные масла применяют также без выделения отдельных компонентов в парфюмерной промышленности. [c.359]

    Широкое распространение хинной кислоты в высших растениях и ее тесная связь с шикимовой кислотой (рис. 12) говорят о том, что она может играть важную роль в метаболизме ароматических соединений в растениях. Уинстейн и сотр. [64] выделили С -хинную кислоту из молодых растений розы, используя Радиоактивность хинной кислоты была приблизительно в восемь раз больше, чем шикимовой кислоты, выделенной из этого же источника. При подкармливании розы меченой хинной кислотой последняя превращалась [c.252]

    Рассматривая вопрос о происхождении лигнина и других вторичных метаболитов, следует также иметь в виду проблему выделения веществ из растений. Микроорганизмы легко выделяют отбросы метаболизма и его побочные продукты в среду. Однако массивные формы, для которых отношение поверхности к объему сравнительно невелико, испытывают в этом отношении затруднения. Эволюция животных в значительной степени зависела от развития органов, предназначенных для этой цели. Что касается растений, то, хотя некоторые материалы могут у них выделяться через корни, листовую поверхность или в млечники и смоляные ходы, они в большой степени зависят от местного выделения, когда различные соединения выделяются в вакуоль или клеточную оболочку [76]. Это система химического избавления от отбросов, благодаря которой часто образуются нерастворимые, летучие или обезвреженные соединения. С этой точки зрения лигнин мог [c.370]

    Мир растений — исполинское производство высокомолекулярных соединений, в котором осуществляется биохимический синтез высших полисахаридов и лигнина. Катализаторами сложных процессов, приводящих к синтезу высокомолекулярных соединений в растениях, служат белки-ферменты исходным сырьем в синтезе углеводов является двуокись углерода, которая, будучи конечным продуктом окисления любых углеродсодержащих соединений, непрерывно выделяется в атмосферу. Единственным природным процессом, в котором двуокись углерода претерпевает обратное пре- [c.12]

    Обменная адсорбция имеет большое значение в земледелии, биологии и технике. Почва способна поглощать и удерживать определенные ионы, например катионы К и NH4, содержащиеся в удобрениях и необходимые для питания растении. Взамен этих катионов почва выделяет эквивалентные количества других катионов, например Са + и Анионы, как, например, СГ, NO3, SOf, почти не поглощаются почвой. Согласно К. К- Гедройцу (1933 г.), детально исследовавшему явление обмена ионов в почве, поглощать основания способен так называемый поглощающий комплекс— высокодисперсная смесь нерастворимых алюмосиликатов и органоминеральных соединений. От природы поглощенных ионов в значительной мере зависят физические и агротехнические свойства почвы. [c.150]

    Для получения меченых соединений приходится, как правило, исходить из простых веществ, выделяемых в виде обогащенных каким-либо стабильным изотопом или получаемые/ в ядерных реакторах. Более сложные соединения синтезируют химическим или биохимическим путем. Например, многие сложные природные органические молекулы с меченым углеродом 1 С выделяют из растений, выращенных в среде Поскольку химические свойства [c.29]

    Органические соединения особенно важны тем, что являются конструктивным и энергетическим материалом животных и растительных организмов. Источниками их получения служат прежде всего растительные и животные организмы — своеобразные химические лаборатории, в которых протекает множество сложнейших реакций. Так, в зеленых растениях исходные вещества для синтеза — простейшие соединения (СОз и минеральные соли). Животные организмы для жизнедеятельности получают в готовом виде довольно сложные органические соединения (углеводы, жиры, белки), синтезированные растениями. В организме человека и животных преобладают окислительные процессы, приводящие в конечном счете к превращению химической энергии в тепловую и образованию простейших конечных веществ, в основном оксида углерода (IV) и воды. Азот выделяется в составе мочевины. Огромное количество органических веществ получают из древесины, торфа, горючих сланцев, [c.86]

    Основная масса фтора земной поверхности обязана своим происхождением горячим недрам Земли (откуда этот элемент выделялся вместе с парами воды в виде НР). Среднее содержание фтора в почвах составляет 0,02%, в водах рек — 0,00002% и в океане—0,0001%. Человеческий организм содержит фтористые соединения главным образом в зубах и костях. В вещество зубов входит около 0,01% фтора, причем большая часть этого количества падает на эмаль [состав которой близок к формуле СабР(Р04)з], В отдельных костях содержание фтора сильно колеблется. Для растительных организмов накопление фтора не характерно. Из культур- д ных растений относительно богаты им лук и чечевица. Обычное поступление фтора в организм с пищей составляет около 1 мг за сутки. [c.241]


    Природными соединениями называются органические соединения, образующиеся в результате химических превращений веществ в клетках организмов. Обычно они легко выделяются, и поэтому многие из этих соединений известны уже давно. Структура природных соединений разнообразна — от очень простой (как, например, у простейшего гормона роста растений — этилена) до сложной, иногда даже полимерной (например, у полисахаридов, белков и нуклеиновых кислот). Определение структуры некоторых природных продуктов потребовало многолетних усилий выдающихся исследователей, а в ряде случаев (например, для некоторых макромолекулярных комплексов полисахаридного характера) структурная проблема не решена удовлетворительно до сих пор. [c.178]

    СМОЛЫ — сложные органические вещества бывают природными и синтетическими. Природные смолы выделяются растениями при нормальном физиологическом обмене. С. богаты тропические растения, а также хвойные. С.— аморфные вещества различного цвета и<елто-оранжевого (гуммигут), красного (драконовая кровь), коричневого (шеллак), от желтого до темно-бурого (канифоль, янтарь). В состав С. входят соединения различных классов смоляные, или ре-зиноловые кислоты, общей формулы СаоНзцОг, производные абиетиновой кислоты, смоляные спирты, или резииолы, индифферентные вещества, или резены, химическая природа которых еще мало изучена. С. применяют в мыловарении, для пропитки бумаги, в медицине и парфюмерии. В настоящее время природные смолы заменяют синтетическими — полиме- [c.230]

    Около половины известных антраценнроизводных (примерно 100 соединений) выделено из высших растений. Здесь они наиболее часто встречаются в расте]гаях семейств мареновых, гречишных, крушиновых, бобовых, лилейных, зверобойных, вербеновых и др. [c.67]

    Фитол С20Н39ОН является ациклическим дитерпеном, составляющим примерно одну треть молекулы хлорофилла. Это соединение выделено из хлорофилла более двухсот видов растений. Оба хиральных центра фитола имеют / -конфигурацию двойная связь цис-тпа. [c.268]

    Поглощаемый из атмосферы СО2 в ассимиляционных тканях листа превращается в органические соединения, которые затем передаются в остальные органы дерева. В этих процессах синтеза листья используют солнечную энергию, т.е. происходит ф о -тосинтез. Побочным продуктом фотосинтеза является кислород, выделяемый в атмосферу. Дополнительную энергию и целый ряд химических соединений древесные растения получают в результате дыхания, в ходе которого происходит окисление органических веществ. В противоположность фотосинтезу при дыхании поглощается кислород, а выделяется СО2 как один из конечных продуктов окисления. [c.211]

    Получают стероидные сапонины из наперстянки, диоскореи, аралии, сои и других растений путем экстракции их водой или водными растворами этанола. Индивидуальные соединения выделяют с помощью хроматографии или методом противоточного распределе шя. [c.26]

    Первый период развития органической химии, называемый эмпирическим (с середины ХУП до конца ХУП1 века), охватывает большой промежуток времени от первоначального знакомства человека с органическими веществами до возникновения органической химии как науки. В этот период познание органических веществ, способов их выделения и переработки происходило опытным путем. По определению знаменитого шведского химика Й. Берцелиуса, органическая химия этого периода была химией растительных и животных веществ . К концу эмпирического периода были известны многие органические соединения. Из растений были выделены лимонная, щавелевая, яблочная, галловая, молочная кислоты из мочи человека — мочевина, из мочи лошади — гиппуровая кислота. Обилие органических веществ послужило стимулом для углубленного изучения их состава и свойств. [c.17]

    Количество выдыхаемого человеком углекислого газа распределяется в сутки неравномерно во время ночи принимается более кислорода, чем днем (ночью в 12 часов около 450 г , а выделяется углекислого газа днем более, чем во время ночи и покоя, а именно из 900 г суточного выделения ночью выделяется всего около S7S, а днем — около 525. Это зависит, конечно, от выделения СО при всякой работе, совершаемой человеком днем. Каждое возродившееся движение есть результат какого-либо изменения вещества, потому что сила сама собою происходить не может (по закону сохранения энергии). Пропорционально количеству сгоревшего углерода развивается в организме ряд сил, потребных для разнообразных движений, производимых животными. Доказательством этому служит то, что во время работы человек выдыхает в течение 12 часов, вместо 525 г, 900 г СО , поглощая при этом такое же количество кислорода, как и прежде, человек тогда — горит. В рабочие сутки ночью человек выдыхает почти то же самое количество углекислого газа, как и в сутки покоя, но поглощает зато сравнительно большее количество кислорода ночью, так что в результате рабочих суток человек выделяет около 1 300 г углекислого rasa и поглощает около 950 г кислорода. Следовательно, от работы обмен материи увеличивается. Углерод, расходуемый на работу, поступает из пищи поэтому пища животного должна содержать непременно углеродистые вещества, способные растворяться от действия желудочных соков и переходить в кровь, или, как говорится, способные перевариваться. Такою пищею служат человеку и всем другим животным или вещества растительные, или части других животных. Эти последние, во всяком случае, берут углеродистые вещества из растений в растениях же они образуются вследствие отложения углерода из углекислоты, происходящего днем, во время дыхания растения. Объем выдыхаемого растениями кислорода почти равен объему поглощаемого углекислого газа значит, весь почти кислород, входящий в растение в виде углекислого газа, выделяется растением в свободном состоянии от углекислого газа остается, значит, в растении углерод. В то же время растение поглощает и своими листьями, и своими корнями влажность. Неизвестным нам процессом эта поглощенная вода и этот оставшийся от угольной кислоты углерод входят в состав растения в виде так называемых гидратов углерода, составляющих главную массу растительных тканей представителями их служат крахмал и клетчатка состава H Ю . Их состав можно себе представить как соединение углерода, оставшегося от угольной кислоты, с водою 6С-)-5№0. Таким образом совершается в природе, уже посредством одних организмов растительных и животных, круговорот углерода, в котором главным членом служит углекислый газ воздуха. Однако во всем этом круговороте значительную долю участия принимает и вода, особенно в океанах, потому что содержит СО-, и ее во всей воде [c.567]

    Из общего числа (более 600) природных ацетиленовых соединений свыше 350 обнаружено в различных высших растениях. Это явилось следствием усовершенствования техники их выделения, а также применения новых методов анализа и идентификации полиацетиленовых структур. Однако к настоящему времени изучена лишь незначительная часть высших растений. Семейства растений, из которых выделены ацетиленовые соединения, приведены в табл. 1. Главным источником полиацетиленовых соединений являются растения семейства сложноцветных ( ompositae) и семейства [c.11]

    Рассмотренные соединения выделены из высших растений. Из грибов удалось изолировать лишь одно соединение С з, имеющее ен-трииновый хромофор. Природное полииновое соедине- [c.158]

    Биологический вьщос дает представление об уровне фосфатов в почве, необходимом для достижения определенного урожая, а хозяйственный вынос — о фактическом количестве фосфора, удаляемого с поля при уборке культуры. К сожалению, изучению биологического выноса питательных веществ еще не отводится должного места при исследовании питания расте-НИ11. Больше внимания уделено лишь выделению фосфора растением через корни, причем это исследование, впервые проведенное Н. К. Домонтовичем с сотрудниками (1926—1930), вызывает и практический интерес. Речь идет о выделении люпином фосфатов при удобрении его фосфоритной мукой. Фосфора выделяется столько, что улучшается питание злаков и проса в смешанных с люпином посевах, хотя обе первые культуры сами не способны усваивать его из фосфорита. А. И. Ахромейко (1936) нашел, что это соединение выделяют и другие бобовые растения, а также конопля при выращивании нх и на растворимых фосфорнокислых солях. Зерновые хлеба, корне- и клубнеплоды в нормальных условиях питания фосфора не выделяют, кроме случаев, когда они подвергаются выщелачивающему действию воды, но это относится уже больше к листьям, чем к корням. [c.225]

    Значительно более разнообразен состав молекул, имеющих в основе изопреновые звенья. Здесь можно выделить 1) монотерпены (Сю) как алифатические, так и моноциклические 2) сесквитерпены (Си) — алифатические, моно- и бициклические 3) дитерпены ( ao) — алифатические (фитол), би-, три- и, вероятно, тетрациклические циклические дитерпены чаще всего входят в состав высших растений 4) тритерпепы (Сдо) — как алифатические, так и три-, тетра- и пентациклические. Среди тетра- и пентациклических соединений отметим такие важные для химии нефти соединения, как стеролы [c.180]

    Очень интересным типом азотсодержащих соединений нефти являются порфирины. Они имеют такое же строение, как порфири-новый комплекс, входящий в молечулу хлорофилла или гема, только вместо магния (хлорофилл) или железа (гем) в порфири-новых комплексах иефти встречается ванадий или никель. Пор-с )ириновые комплексы нефти фотоактивны, они способны ускорять окислительно-восстановительные реакции, поэтому предполагают, что они принимают активное участие в процессах диспропорционирования водорода в процессе генезиса нефти. Очевидно, более глубокое изучение этих природных соединений позволит расширить наши представления о происхождении нефти, а возможно, и выделить новый вид катализаторо в с обратимыми окислительно-восстановительными функциями, способными ускорять определенные реакции подобно хлорофиллу в хивых растениях. [c.204]

    Более сложные соединения синтезируют химическим или биохимическим путем. Например, многие сложные природные органические молекулы с меченым углеродом выделяют из растений, выращенных в среде СОг. Поскольку химические свойства СОг не отличаются от сбойств природного СОг, он хорошо усваивается растениями, и из него в результате фотосинтеза получаются различные меченые органические соединения — сахара, аминокислоты и т. п. [c.33]


Смотреть страницы где упоминается термин Соединения, выделенные из растений: [c.13]    [c.229]    [c.264]    [c.46]    [c.271]    [c.926]    [c.189]    [c.340]    [c.243]    [c.57]    [c.59]    [c.150]    [c.245]    [c.270]    [c.297]    [c.194]    [c.468]    [c.450]    [c.1122]    [c.117]    [c.295]    [c.475]   
Смотреть главы в:

Исследование в области химии колхициновых алкалоидов -> Соединения, выделенные из растений




ПОИСК







© 2025 chem21.info Реклама на сайте