Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Волновые

    Свет с колебаниями только в одной плоскости был назван в 1808 г. французским физиком Этьеном Луи Малюсом (1775—1812) поляризованным светом. В то время волновая теория еще не завоевала признание, и Малюс полагал, что свет состоит из частиц с северным и южным полюсами и что в поляризованном свете все полюсы ориентированы в одном направлении. Эта теория вскоре была отвергнута, но название, данное Малюсом, осталось и используется до сих пор. [c.86]

    Казалось естественным предположить, что катодные лучи представляют собой какую-то форму света, обладающую волновым характером. Волны, подобно свету, распространяются прямолинейно и, подобно свету, не испытывают влияния сил тяготения. В то же время катодные лучи вполне могут представлять собой частицы, движущиеся с огромной скоростью. Поскольку масса этих частиц чрезвычайно мала или поскольку они движутся чрезвычайно [c.147]


    В течение первой четверти XX в., с момента открытия электрона, считалось доказанным, что электрон представляет собой очень маленький жесткий шарик. Однако в 1923 г. французский физик Луи Виктор де Бройль (род. в 1892 г.) представил теоретическое обоснование того, что электроны (а также и все другие частицы) обладают волновыми свойствами. К концу 20-х годов XX в. эта гипотеза была подтверждена экспериментально. [c.161]

    Полинг (первым предположивший, что молекулы белков и нуклеиновых кислот имеют форму спирали, см. гл. 10) в начале 30-х годов разработал методы, позволившие при рассмотрении органических реакций учитывать волновую природу электронов. [c.161]

    Кроме строения бензола представления о волновых свойствах электронов помогли объяснить и другие вопросы. Поскольку четыре электрона, находящиеся на внешней оболочке углеродного атома, энергетически не вполне эквивалентны, можно было бы допустить, что и связи, образующиеся между углеродным и соседними с ним атомами, несколько различаются в зависимости от того, какие из электронов участвуют в образовании той или иной связи. [c.162]

    Основной характеристикой электромагнитного излучения яв ляется длина волны % или частота V (чаще вместо частоты ие пользуется волновое число V). Электромагнитные излучения раз личных длин волн (частот) составляют электромагнитный спектр В спектрофотометрии используются ультрафиолетовый (УФ), ви димый и инфракрасный (ИК) участки электромагнитного спектра [c.458]

    Явления дифракции и интерференции электромагнитного излучения (света, радиоволн, у-лучей, рентгеновских лучей и пр.) убедительно доказывают его волновую природу. В то же время электромагнитное излучение обладает энергией, массой, производит давление и т. д. Так, вычислено, что за год масса Солнца уменьшается за счет излучения на J,5-10 кг. [c.11]

    С движением макрочастиц, наоборот, ассоциируется волна столь малой длины (10 м и меньше), что экспериментально волновой процесс обнаружить не удается. [c.11]

    Квантование энергии, волновой характер движения микрочастиц, принцип неопределенности — все это показывает, что классическая механика совершенно непригодна для описания поведения микрочастиц. Так, состояние электрона в атоме нельзя представить как движение материальной частицы по какой-то орбите. Квантовая механика отказывается от уточнения положения электрона в пространстве она заменяет классическое понятие точного нахождения частицы понятием статистической вероятности нахождения электрона в данной точке пространства или в элементе объема с1У вокруг ядра. [c.12]


    Вычисление вероятности нахождения электрона в данном месте атома (молекулы) и его энергии — сложная математическая проб-лша. Она решается с помощью волнового уравнения Шредингера. у Волновое уравнение Шредингера. В 1926 г. Эрвин Шредингер предложил уравнение, получившее название волнового уравнения Шредингера, которое в квантовой механике играет такую же роль, какую законы Ньютона играют в классической механике. [c.13]

    Уравнение Шредингера связывает волновую функцию з с потенциальной энергией электрона и и его полной энергией Е  [c.13]

    Такое толкование орбитали несколько упрощенно. Орбиталь — понятие математическое, смысл которого вытекает из волнового уравнения. [c.13]

    Таким образом, квантование энергии микросистемы непосредственно вытекает из решения волнового уравнения. [c.14]

    V Главное квантовое число. Энергетические уровни. Согласно условиям квантования электрон в атоме может находиться лишь в определенных квантовых состояниях, соответствующих определенным значениям его энергии связи с ядром. Так, волновые функции, получаемые решением волнового уравнения для атома водорода, соответствуют только таким энергиям, которые задаются выражением [c.14]

    Согласно квантовомеханическим расчетам -орбитали имеют форму шара, р-орбитали—форму гантели, 1- и орбитали — более сложные формы. Формы граничных поверхностей 5-, р- и -орбиталей показаны на рис. 7. На изображении граничной поверхности часто указывают также знак волновой функции. [c.17]

    Поскольку точное решение уравнения Шредингера для более сложных молекул, чем Нг, невозможно, возникли различные приближенные методы расчета волновой функции, а следовательно, распределения электронной плотности в молекуле. Наиболее широкое распространение получили два подхода теория валентных связен (ВС) и теория молекулярных связей орбиталей (МО). В развитии первой теории особая заслуга принадлежит Гайтлеру и Лондону, Слетеру и Полингу, в развитии второй теории — Малликену и Хунду. [c.46]

    Случаи утечки большого количества этилена из системы высокого давления с последующим его воспламенением, сопровождаемым пожарами, встречались на практике неоднократно. Утечки были вызваны разуплотнением нижнего волнового кольца реактора, а также разуплотнением фланцевых соединений блока клапанов отделителя высокого давления, отрывом трубки сальника в месте сварки его со штуцером компрессора высокого давления разрывом трубопровода подачи кислорода в реактор (скрытые дефекты материала трубопровода), разрывом трубопровода возвратного газа (местное термическое разложение этилена в трубопроводе) и другими причинами. Основной причиной большинства аварий является повреждение оборудования, работающего под высоким давлением. Поэтому серьезное внимание должно быть уделено упрочнению трубопроводов, реакторов, уплотнению мест соединений труб высокого давления и ввода термопар, размещению датчиков давления, созданию коррозионностойкого оборудования и др. [c.107]

    Для нахождения динамических характеристик колонных аппаратов по гидродинамическим каналам необходимо знать механизмы распространения и взаимодействия волн концентрации дисперсной фазы в двухфазном потоке. Успехи, достигнутые за последние годы в развитии континуальной модели движения дисперсных смесей, позволяют провести исследование волновых процессов в рамках этой модели, используя различные уровни приближения. [c.113]

    Уравнения (2.123) и (2.124) показывают, что скорости фаз Мд иг7(. в рассматриваемом случае являются функциями только объемной концентрации дисперсной фазы 1р и времени Г и не зависят от высоты аппарата Л. Это дает возможность, используя одно из уравнений (2.122), получить волновое уравнение для описания распространения возмущений концентрации дисперсной фазы  [c.115]

    И в том, и в другом случае необходимо иметь систему уравнений для определения лишь трех неизвестных функций возмущения концентрации дисперсной фазы а и малых отклонений (возмущений) приведенных скоростей фаз Уд и Ус от стационарных значений. Волновое уравнение, описывающее распространение малых возмущений объемной концентрации дисперсной фазы а, получено нами ранее. Уравнения, связывающие возмущения приведенных скоростей фаз 7д и Ус с а, получим следующим образом. Представим приведенные скорости фаз в линеаризованном виде  [c.119]

    Ниже приведены длины волн и волновые числа этих участког. спектра  [c.459]

    Современная теория строения атома основана на законах, описывающих движение микрочастиц (микрообъектов). Поскольку массы и размеры мри<рочастиц чрезвычайно малы по сравнению с массами и размерами макроскопических тел, свойства и закономерности движения отдельной микрочастицы качественно от-JП[чaют я от свойств и закономерностей движения макроскопического тела, уже давно изученных классической физикой. В 20-е годы XX в, возник новый раздел физики, описывающий движение и взаимодей-С1ВИЯ микрочастиц, — квантовая (или волновая) механика. Она основывается на представлении о квантовании энергии, волновом характере движения микрочастиц н вероятностном (статистическом) методе описания микрообъектов. [c.10]


    В 1924 г. Луи де Бройль предложил распространить кориуску-лярно-волновые представления на все микрочастицы, т. е. движение любой микрочастицы рассматривать как волновой процесс. Математически это нашло выражение в соотношении де Брой-л я, согласно которому частице, имеющей массу m и движущейся со скоростью V, соответствует волна длиной X , [c.11]

    Не выясняя математический смысл волнового уравнения, отметим что его приемлемые решения возможны только при вполне определенных дискретных значениях энергии электрона. Различным функциям г] ,, 4. , 11)3, > которые являются решением волнового уравнения, каждог соответствует свое значение энергии Е1, Е 2, [c.14]

    Волновая функция, являющаяся решением уравнения Шредингера, называется орбиталью. Соотношение волновых функций г() и 1 ) а также 4л для электрона с наименьшей энергие в атоме водорода но-Рис. 4. Волновые функции и плот- казано на рис. 4. Понятно, что иость вероятности для электрона ДЛЯ электрона С другой энерги-атома водорода с наименьшей энер- ей ВИД кривых буДеТ ИНЫМ, гией [c.14]

    Поскольку орбиталь, описывается волновой функцией ф, а распределение электронной плотности — ее квадратом форма орбитали (кроме -типа) нес олько у 4иияртг-я электронного облака. [c.17]

    Вследствие волнового характера движения электрона атом не имеет строго определенных границ. Поэтому измерить абсолютные размеры атомов невозможно. За радиус свободного атома можно принять теоретически рассчитанное положение главного максимума плотности внешних электронных облаков (рис, 16), Это так называемый орбитальный радикс. Практически приходится иметь дело с радиусами атомов, связанных друг с другом тем или иным типом химической связи. Такие радиусы следует рассматривать как некоторые чффекпшвные (т, е, проявляющие себя в действии) величины. [c.37]

    При сложении атомных орбиталей образуется двухцентровая молекулярная орбиталь Сложение означает, что молекулярная орбиталь характеризуется повышенной электронной плотностью в пространстве между ядрами, и поэтому такая орбиталь энергетически более выгодна, чем исходные атомные орбитали. Такую молекулярную орбиталь называют связываюи ей (см. рис. 21) Знак + на изображении молекулярной орбитали означает, что волновая функция везде положительная — имеет один и тот же знак. Орбиталь у-. ла не имеет. [c.48]

    При вычитании же атомных орбиталей образуется двухцентро-В с я орбиталь с пространственным разрывом между ядрами. Это отвечает изменению знака волновой функции. Электронная плотность н 1 этой орбитали концентрируется за ядрами (см. рис. 21), а в середине равна нулю. Подобная орбиталь энергетически менее выгодна, чем исходные атомные орбитали ее называют разрыхляюи ей — [c.48]

    Характер распределения электронной плотности для исходных атомных и образованных молекулярных орбиталей показан на рис. 24. Следует отметить, что поскольку складываются (вычитаются) орбитали (точнее волновые функции), то электронная плотность (характеризуемая квадратом волновой функции) между ядрами больше суммы плотностей электронных облаков изолированных атомов для тех же расстояний. На рис. 25 показано распределение /ектронной плотности в молекуле водорода На- Электронная плот- [c.48]

    Молекулярные орбитали обозначают соответствующими символами, исходя из их поведения при операциях симметрии. Так, если орбитали ст-типа рис. 23, 27) мысленно повернуть вокруг межъядерной оси молекулы на 180°, го полученная форма орбиталей будет неотличима от первоначальной. При ювороте знак волновой функции этих орбиталей не изменяется орбиталь сим-мвтрична относительно этой операции. Аналогично ведет себя атомная s-орби-галь. Поэтому молекулярные орбитали, симметричные относительно вращения кжруг межъядерной оси, обозначают греческой буквой ст (аналог латинского s). [c.54]

    Нетрудно видеть, что молекулярные орбитали я-типа (рис. 28) при пово-DOTe на 180° вокруг межъядерной оси молекулы оказываются антисимметрич-шми относительно этой операции знак волновой функции изменяется на противоположный. Аналогично поведение атомной р-орбитали. Поэтому молекулярные орбитали такого типа обозначают греческой буквой я (л — аналог luTHH KOrO р). [c.54]

    Волновые числа и силовые постоянные валентных колебаний ряпа молекул [c.146]

    Молекула Волновое число V, см Силовая постоянная к, Н/м Молекула Волновое число см СнЛ0В(1Я постоянная к. Н/м [c.146]

    Наща страна занимает ведущее положение в развитии эффективных методов разработки нефтяных месторождений с поддержанием пластового давления закачкой воды. Комплексный подход к разработке нефтяных месторождений, обоснованный группой ученых Российской академии нефти и газа им. Губкина под руководством академика А. П. Крылова (А. П. Крылов, М. М. Глоговский, М.Ф. Мирчинк, Н.М. Николаевский, И. А. Чарный), нащел широкое распространение в нашей и других странах [53]. Достаточно указать, что более 90% ежегодной добычи нефти в нашей стране обеспечивается месторождениями, на которых осуществляется закачка воды. Объемы закачки воды примерно в 3 раза превышают объемы добычи нефти. Средний коэффициент нефтеотдачи превышает 0,4. При этом по существу в полной мере используются все возможности гидродинамики для обеспечения эффективности процесса законтурное, внутриконтурное, приконтурное, барьерное, очаговое И другие заводнения, изменение направлений фильтрационных потоков, волновое и циклическое воздействие на призабойную зону и т. д. Однако в связи с постепенным изменением структуры извлекаемых запасов нефти, связанным с ухудшением горно-геологических условий их залегания, открытием месторождений, приуроченных к глубокозалегающим низкопроницаемым коллекторам (пористым или трещиновато-пористым), обладающим значительной неоднородностью, насыщенных к тому же высоковязкими (малотекучими) нефтями возможности чисто гидродинамических методов воздействия оказались недостаточными для обеспечения высокой нефтеотдачи пластов. [c.300]


Смотреть страницы где упоминается термин Волновые: [c.163]    [c.10]    [c.12]    [c.19]    [c.48]    [c.54]    [c.59]    [c.141]    [c.144]    [c.145]    [c.30]    [c.166]    [c.133]    [c.133]   
Органическая химия (1974) -- [ c.0 ]

Учебник общей химии 1963 (0) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте