Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радиусы атомные и след

    В ряду родственных соединений наблюдается закономерное изменение длин связей, что связано с закономерным изменением атомных (ионных) радиусов элементов в порядке их расположения в периодической системе. Так, в ряду галогеноводородов длины связи Н-Г имеют следующие значения (в пм)  [c.62]

    С увеличением молекулярных (атомных) радиусов возрастает поляризуемость их молекул. Увеличение поляризуемости молекул в ряду Не — Ne — Аг — Кг — Хе характеризуется следующими соотношениями 1 2 3 12 20, т. е. поляризуемость молекулы Хе в 20 раз выше, чем Не. Рост поляризуемости сказывается на усилении межмолекулярного взаимодействия, а это последнее — на возрастании температур кипения и плавления криптона и его аналогов по сравнению с неоном и аргоном. В ряду Не—Ne—Аг—Кг—Хе—Rn усиливается также растворимость газов в воде и других растворителях, возрастает склонность к адсорбции и т. д. В твердом состоянии, подобно Ne и Аг, криптон, ксенон и радон имеют кубическую гранецентрированную кристаллическую решетку. [c.613]


    Атомные и ионные радиусы строго следуют закономерности, лежащей в основе периодического закона Д. И. Менделеева существует определенная связь между положением элемента в периодической системе и эффективными радиусами его атомов и образуемых им ионов. [c.125]

    Вследствие лантаноидной контракции атомные радиусы последующих -элементов аномально малы. Аналогично лантаноидной контракции можно отметить и существование -сжатия. Это явление, однако, выражено слабее, что объясняется, во-первых, относительно большим удалением -оболочки от ядра, а во-вторых, меньшей плотностью -состояний по сравнению с /-уровнем. Поэтому эффект -контракции заметен лишь у элементов 1-й вставной декады и проявляется в уменьшении атомного радиуса последующего элемента галлия (0,125 нм) по сравнению с его предшествующим аналогом — алюминием (0,142 нм). На значениях атомных радиусов элементов, следующих за 2-й и 3-й декадами, -контракция практически не сказывается. [c.371]

    Контурные диаграммы распределения плотностей дают многое для понимания молекул и наглядны, так же как и условные геометрические радиусы атомных орбиталей. Однако следует помнить, что и для атомов химическое поведение больше зависит не от геометрии, а от потенциалов ионизации и возбуждения, а также от поляризуемости электронных облаков. Совершенно так же и для молекул одной геометрической наглядной характеристики контурных графиков общих и разностных плотностей не- [c.254]

    При использовании этого правила атомный радиус водорода следует принять равным 0,37 А. [c.204]

    С увеличением заряда атомного ядра электроны сильнее притягиваются к ядру, в результате чего радиусы атомов, как правило, уменьшаются. Например, радиус атома лития Д,57А, а радиус атома следующего за ним элемента бериллия 1,13А. Это влечет за собой увеличение энергии ионизации элементов в периоде по мере возрастания заряда атомного ядра. В периоде с увеличением порядкового номера ослабляются металлические свойства. У элементов, находящихся ближе к концу периода, в направлении слева направо наблюдается усиление сродства к электрону, происходит нарастание неметаллических свойств. [c.59]

    Согласно работам Захариазена [21], сжатие более заметно для атомных радиусов в следующем порядке  [c.137]

    Выше мы говорили, что радиусы атомных ядер Н примерно в 100 000 раз меньше радиуса атома. Даже для самых тяжелых ядер радиус Я не превышает 10" см. Отсюда следует, что площадь геометрического поперечного сечения ядра — геометрическое сечение тг — должно быть порядка 10 24 Сечения ядерных реакций, протекающих под действием заряженных частиц, никогда не превышают геометрических сечений, а большей частью значительно меньше, чем 10" см , и обычно лежат в интервале 10 27— ю-25 см . [c.85]


    Атомные радиусы. Атомные радиусы химических элементов изменяются периодически (рис. 18). Уменьшаясь от щелочного металла до галогена, атомный радиус следующего щелочного металла снова увеличивается и становится больше радиуса атома предыдущего щелочного металла. Так, атом натрия имеет радиус 1,8 А, атомный радиус магния 1,6 А, радиус атома хлора 0,73 А, а радиус калия вновь увеличивается и становится равным 2,2 А. Таким образом, общая закономерность в изменении радиусов проявляется в том, что в пределах заполнения электронами подуровня ( -, р-, й- или /-) атомные радиусы, как правило, уменьшаются. Объяснить это можно тем, что сила притяжения увеличивающегося заряда ядра играет большую роль, чем взаимное отталкивание электронов. [c.31]

    Как видно из табл. 1, энергия ионизации АН , необходимая для образования частиц возрастает от Ки к Р(1 и от Оз к Р1. Эта величина указывает на уменьшение АНг с возрастанием атомного номера для каждого ряда МГ , но это влияние можно исключить изменениями радиуса (катиона). Следует ожидать, что до тех пор, пока несвязанный электрон расположен исключительно на орбиталях (О1,) или орбиталях е (Т ), радиус должен уменьшаться с возрастанием атомного номера для каждого ряда переходных элементов (см. рис. 1 и гексафториды). Так катион Р1 +(Л обладает более высокими поляризующими свойствами, чем Оз +(Лу, и соответственно должен иметь меньшие размеры. Если, однако, орбитали (О ) или орбитали t (Т ) заняты, поляризующий эффект снижается. Например, Рс1 + (5 в может обладать большим эффективным радиусом, чем Ки +( ). Следует отметить также, что первая конфигурация обусловливает меньшую стабилизацию поля кристалла, чем последняя. [c.382]

    При пользовании атомными радиусами элементов следует учитывать возможное различие их происхождения. Например, для х. юра за такой радиус принимается половина ядерного расстояния в его двухатомной молекуле, для аргона половина ядерного расстояния в его кристаллической решетке (где атом лишь слабо взаимодействует с другими), а для калия — половина ядерного расстояния в его металлической структуре (где. межатомное взаимодействие весьма сильно). Поэтому при внешней правильности изменения атомных радиусов по ряду С1 (1,00) — Аг (1,92) —-К (2,36 А) в действительности эти радиусы нельзя считать строго сопоставимыми. [c.301]

    Кремнезем 5102 принципиально отличается по свойствам от аналогичного ему по составу углекислого газа СО2. Кремнезем — твердое, очень тугоплавкое кристаллическое вещество, нерастворимое в воде и не вступающее с ней во взаимодействие. Причина столь резкого различия в свойствах СО2 и 5102 заключается в том, что кремний не образует с кислородом молекулы 51 02. Если бы такие молекулы существовали, им следовало бы приписать аналогичную СО2 структурную формулу 0 = 51 = 0, где л-связи должны быть образованы за счет р-орбиталей кремния и кислорода, как и у СО2. Однако вследствие того что радиус кремния больше радиуса углерода, кремний я-связей образовывать не может не только друг с другом, но и с атомами других элементов. Поэтому в ЗЮг кремний связан с кислородом только а-связями за счет перекрывания своих 5р -гибридных орбиталей с р-орбиталями кислорода. Значит, кремнезем имеет пространственную атомную решетку, в которой каждый атом кремния окружен четырьмя атомами кислорода, расположенными вокруг кремния под тетраэдрическими углами. Координационное число крем- [c.250]

    Как уже указывалось, образованию твердых растворов благоприятствуют близость химических свойств, атомных радиусов и типов кристаллической структуры исходных веществ (с. 134). Несоблюдение одного из этих условий приводит к тому, что твердые растворы между компонентами образуются лишь в ограниченных пределах концентраций или же не образуются вообще. Например, предельная растворимость ряда металлов в никеле г =0,124 нм) выражается в виде следующего ряда  [c.254]

    Наиболее важным свойством лантаноидов является их большое сходство между собой. Это сходство обусловлено главным образом тем, что последовательное заселение электронами касается низколежащих /-орбита-лей, что вызывает лишь небольшие изменения атомных и ионных радиусов ( 0,01 А) при переходе к каждому следующему элементу данного ряда. Преобладающим состоянием окисления у лантаноидов и в меньшей мере у актиноидов является состояние окисления + 3 почти все соединения этих элементов представляют собой ионные соли, содержащие дискретные ионы с зарядом -I- 3. Большое сходство лантаноидов друг с другом приводит к тому, что в природе они всегда встречаются вместе и с трудом поддаются разделению. [c.451]

    Первые разделы главы, в которых обсуждаются ядерное строение атома, квантование и атомная теория Бора, можно включить в любой курс. Основной упор следует сделать на происхождение атомных спектров как переходов между дискретными энергетическими уровнями и на использование квантового числа п для обозначения уровней, а также для вычисления радиуса и энергии движущегося электрона в атоме. [c.573]


    Свойства ядер. Существование ядер обусловлено действием так называемых ядерных сил (сильным взаимодействием). Они действуют между нуклонами на малых расстояниях (<10 м) и значительно превосходят кулоновское отталкивание одноименно заряженных протонов. Точный закон действия ядерных сил пока не известен. Ядерные силы обладают свойством насыщения и не зависят от заряда взаимодействующих частиц. Радиус ядра Ляд 1,2-10 Аг см, где Аг — массовое число. Отсюда следует, что все атомные ядра независимо от размера имеют одинаковую плотность порядка 10 кг/м (1 см ядерного вещества весит более 100 млн. т). [c.49]

    В табл. 21.8 указан ряд важнейших свойств атомов элементов группы 6А. Энергия простой связи X—X получена путем оценки данных для соответствующих элементов, кроме кислорода. В последнем случае, поскольку связь О—О в молекуле Oj не является простой (см. разд. 8.6 и 8.7, ч. 1), оценку проводили по значению энергии связи О—О в пероксиде водорода. Восстановите льный потенциал, указанный в последней строке таблицы, относится к восстановлению элемента в его стандарлном состоянии с образованием Н,Х(водн.) в кислом растворе. Для большинства указанных в табл. 21.8 свойств снова наблюдается закономерная зависимость от атомного номера элемента. Атомные и ионные радиусы увеличиваются, соответственно энергия ионизации уменьшается, как и следует ожидать на основе изложенного в разд. 6.5, ч. 1. [c.300]

    В подгруппах -элементов радиусы атомов в общем увеличиваются. Важно отметить следующую особенность увеличение атомных и ионных радиусов а подгруппах -элементов в основном отвечает переходу от элемента 4 го к элементу [c.40]

    Растворимость в твердом состоянии. Растворимость веществ в твердом состоянии, как следует из диаграмм состояния систем с твердыми фазами (рис. 62—65, 78) колеблется в широких пределах. Она определяется химической структурой образующегося твердого раствора. Наиболее важную роль здесь играют характер химической связи между его компонентами, подобие кристаллических решеток и соотношение атомных (ионных) радиусов частиц взаимодействующих компонентов. [c.220]

    Кроме того, в ряду В—А1—Зс—V—Ьа—Ас (в противоположность ряду В—А1—(За—1п—Т1) монотонно увеличиваются атомные и ионные радиусы. Таким образом, следует ожидать, что в ряду В—Ас свойства однотипных соединений должны изменяться монотонно в противоположность ряду В—Т1. [c.545]

    Больщая часть перечисленных в табл. 21.4 свойств закономерно изменяется в зависимости от атомного номера элемента. В пределах каждого периода соответствующий галоген имеет почти самую высокую энергию ионизации, уступая только следующему за ним благородному газу. Точно так же каждый галоген в пределах своего периода имеет самую больщую электроотрицательность. В группе галогенов атомные и ионные радиусы увеличиваются с возрастанием атомного номера. Соответственно энергия ионизации и электроотрицательность уменьшаются в направлении от легких к тяжелым галогенам. При обычных условиях галогены существуют, как уже сказано выще, в виде двухатомных молекул. При комнатной температуре и давлении I атм 12 представляет собой твердое вещество, Вг2-жвдкость, а С12 и Р -газы. Высокая реакционная способность р2 очень затрудняет обращение с ним. Хранить Р2 можно в металлических сосудах, например медных или никелевых, так как на их поверхности образуется защитное покрытие из фторида соответствующего металла. Обращение с хлором тоже требует особой осторожности. Поскольку хлор путем сжатия при комнатной температуре можно превратить в жидкость, обычно его хранят и транспортируют в жидкой форме в стальных емкостях. Хлор и более тяжелые галогены обладают большой реакционной способностью, хотя и не такой высокой, как фтор. Они непосредственно соединяются с большинством элементов, за исключением благородных газов. [c.290]

    Атомные радиусы убывают в последовательности 8 > С1 > Аг, поскольку при переходе от 8 к С1 и от С1 к Аг заряд ядра возрастает на единицу. В пределах одного периода валентные электроны сильнее притягиваются к ядру с возросшим положительным зарядом, поэтому атомные радиусы соответственно уменьшаются. Для изоэлектронных (имеющих одинаковое число электронов) атомных и ионных частиц эффективные радиусы уменьшаются по мере возрастания заряда ядра (порядкового номера элемента), так как и в этом случае происходит последовательное увеличение притяжения электронов к ядру. Таким образом, указанные изоэлек-тронные частицы в порядке уменьшения эффективных радиусов располагаются в следующий ряд 8 > С1 > Аг > К > Са .  [c.405]

    Интересно сопоставить данные, приведенные в табл. 21.8, с соответствующими данными для галогенов, помещенными в табл. 21.4. Обращает на себя внимание тот факт, что энергии ионизации и сродство к электрону у галогенов, как правило, выше. Соответственно атомные радиусы галогенов меньше, а их электроотрицательности выше. Потенциалы восстановления свободных элементов до устойчивого отрицательного состояния окисления больше для галогенов, как и следовало ожидать. Энергии простых связей X—X для элементов обеих групп в каждом периоде отличаются не очень сильно. Например, энергия связи 8—5 в равна 226 кДж/моль, а энергия связи С1—С1 в С12 равна 243 кДж/моль. Интересно, что в обеих группах энергия связи X—X для первого элемента каждой группы аномально низка. Учитывая все сказанное, рассмотрим отдельно физические и химические свойства кислорода, а затем сразу всех остальных элементов группы 6А. [c.301]

    В третьем случае атом углерода (гибридизация р) непосредственно связан с двумя атомами, образуя линейную конфигурацию. При переходе от одного типа координации к другому не только меняются валентные углы, но и происходит изменение ковалентного радиуса атома углерода. Для оценки атомных расстояний приходится принимать во внимание как тип образующейся связи (простая, двойная или тройная), таки состояние гибридизации. На основании многочисленных электронографических измерений предложена следующая система ковалентных радиусов углерода (табл. 7)  [c.140]

    С началом застройки нового электронного слоя, более удаленного от ядра, т. е. при переходе к следующему периоду, атомные радиусы возрастают (сравните, например, радиусы атомов неона и натрия). В пределах подгруппы с возрастанием заряда ядра размеры атомов увеличиваются. Приведем в качестве примера значения орбитальных атомных радиусов (в пм) элементов некоторых главных подгрупп  [c.81]

    Так как невозможно выделить отдельно атом или ион и измерить их радиус, следует полагаться на измерения, сделанные на большом количестве вещества, и допустить, что атомные модели правильны в отношении поведения атомов и ионов во всей структуре [c.108]

    Из графика видно, как это и следовало ожидать, что максимальные кажущиеся радиусы нейтральных атомов характерны для щелочных металлов, обладающих наибольшим атомным объемом (жирная кривая). [c.89]

    При расчете Брюстер пользуется следующими приводимыми ниже длинами связей (эти длины связей рассчитаны на основе атомных радиусов по Полингу и несколько отличаются от приводившихся нами ранее в табл. 1 средних экспериментальных величин)  [c.308]

    Атомными радиусами следует пользоваться в случае, когда два атома связаны между собой ковалентной или металлической связью. Радиу- [c.139]

    В конечном счете нахождение эмпирических значений атомных и ионных радиусов основано на предложении Брэгга, сделанном в 1920 г., о том, что межъядерное расстояние в кристалле можно рассматривать как сумму радиусов. Брэггом установлен ряд радиусов, сумма которых равна экспериментальным значениям межъядерных расстояний, в нескольких сотнях кристаллов как ионных, так и металлических, со средним отклонением 0,06 A. После 1920 г. в работах Борна, Ланде, Внкова, Хаггенса, Васастьерне, Гольдшмидта, Полинга, Шермана, Захариазена и других исследователей было предложено большое число разновидностей радиусов (см., например, обзорную работу Полинга [3]). Эволюция понятия радиуса включает следующие этапы установление различных видов радиусов для описания разных видов кристаллов и типов связей и детализацию правил, устанавливающих связь одних видов радиусов с другими, для получения хорошего согласия с экспериментальными данными. [c.114]

    В третьем типе моделей, где атомы и длины связей выполнены в масштабе, атомы представляют собой шарики, обрезанные под прямым углом к направлению связей и снабженные гнездами, которые соединяются зажимами. Эти модели особенно удобны в том случае, когда необходимо выяснить, могут ли два данных атома в молекуле достаточно сильно сблизиться друг с другом, существует ли в молекуле напряжение вследствие скопления определенных атомов и т. д. Имеются варианты как малого масштаба (модели Фишера — Хиршфельдера — Тэйлора, 1А=1 см), так и несколько большего размера (модели Стюарта — Бриглеба, 1А=1,5 см). Так называемые модели Каталины представляют собой видоизменение моделей Фишера — Хиршфельдера — Тэйлора, в которых атомы, сделанные из фенолформальдегидной смолы, соединяются стерженьками из твердой резины вместо металлических зажимов. Это придает моделям несколько большую гибкость и позволяет собирать умеренно напряженные структуры. Другой способ увеличения гибкости моделей использован в атомных моделях Курто (масштаб 1А=2 см). В них гнезда зажимов снабжены пружиной, которая делает возможным некоторое боковое движение, а атомы разделены резиновой прокладкой. Следующим типом очень гибких моделей являются модели Годфри (масштаб Л= 1,65 см), в которых гибкость достигается изготовлением атомов из поливинилхлорида, а соединений (связей) из полиэтилена. С помощью моделей Годфри можно построить даже модель циклопропана. В моделях Курто и Годфри радиусы шаровых поверхностей атомных моделей пропорциональны реальным вандерваальсовым радиусам атомов, тогда как в моделях Фишера — Хиршфельдера — Тэйлора, Стюарта — Бриглеба и Каталины радиусы атомных сфер составляют примерно 80% от вандерваальсовых радиусов. Например, в моделях Каталины, где масштаб для длины связей составляет 1 см I А, радиус модели атома азота равен [c.21]

    Т1) монотонно увеличиваются атомные и ионные радиусы (см. рис. 17). Таким образом, следует ожидать, что в ряду В—Ас свойства однотипных соединений должны изменяться монотонно в противоположность ряду в—Т1. Сказанное подтверждается, например, при сопоставлении суммы первых трех энергий ионизации атомов и энта ьпий образования соединений элементов подгрупп скандия и галлия к типических элементов треть- Рис. 221. Сумма трех первых энер-ей группы (рис. 221). Как видно 1ИЙ ионизации атомов и энтальпии из рнс. 221, во всем ряду В- -Ас образования оксидов Э Оз элемен- [c.525]

    Можно легко показать, что применение принципа Паули приводит к тем же выводам, что и метод валентных связей. Общая методика заключается в следующем. Предполагается, что валентные электроны находятся на соответствующих атомных s-, р- и d-орбиталях. Затем для этих электронов пишут полную антисимметричную волновую функцию , тем самым принимая во внимание принцип Паули и неразличимость электронов. Далее, считают, что значение волновой функции для любой конфигурации, в которой два электрона имеют те же самые спины и характеризуются одинаковыми радиусами-векторами, равно нулю, так что вероятность такой конфигурации также равна нулю. В соответствии с принципом запрета, электроны с одним итем же спином оказываются пространственно разобщены. Это вскоре станет более ясным, когда будет рассмотрен конкретный пример. [c.200]

    Образуя главную подгруппу I группы периодической системы, ЩЭ —зЬ], пЫа, эК, зтКЬ, ббСз, вуРг —следуют непосредственно за инертными газами [2], и их собственные электроны располагаются на новом энергетическом уровне, начиная электронный слой с главным квантовым числом на единицу большим, чем у элементов предыдущего периода (табл. 1.1). Валентным пз -электронам предшествует завершенная электронная оболочка типа инертного газа. Понятно поэтому, что валентные электроны каждого ЩЭ отщепляются легче, чем у любого другого элемента того же периода, — электронный слой, только что начав формироваться, еще очень далек от завершения и поэтому непрочен. Впрочем, как видно из табл. 1.1, величины ионизационных потенциалов (ПИ1) для металлического состояния ЩЭ все же велики. Это относится прежде всего к литию, для которого ПИ1 = = 5,37 эВ ( — 123,5 ккал/моль). С ростом атомного и ионного радиуса величины ПИ сверху вниз в подгруппе уменьшаются. У цезия ПИ самый низкий из измеренных среди ЩЭ и других элементов периодической системы (3,58 эВ). [c.5]

    Основные характеристики элементов главной подгруппы II группы периодической системы (табл. 1.3) изменяются в ряду Ве—Ra закономерно как и следовало ол<идать, величины атомных и ионных радиусов растут, величины потенциалов нонизацпи уменьшаются, атомная масса увеличивается, металлические и кислотно-основные свойства становятся все более явными. [c.23]

    Прочность связей М—Н и М—М падает с ростом атомных радиусов и умеиьшенпем электроотрицательности элементов, тенденцию из-менепня которой в V группе можно представить следующим образом  [c.184]


Смотреть страницы где упоминается термин Радиусы атомные и след: [c.382]    [c.429]    [c.106]    [c.106]    [c.505]    [c.118]    [c.363]    [c.91]    [c.115]    [c.26]   
Структуры неорганических веществ (1950) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Атомный радиус

Радиусы атомные и след соотношение

след

след н след



© 2025 chem21.info Реклама на сайте