Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние температуры на свойства окиси алюминия

    Это явление связано с природой угольного электрода, а не с подводом каких-либо восстанавливающихся примесей из раствора, так как на платиновых электродах в тех же растворах Я не зависит от и (см. рис. 2). Можно предположить, что зависимость Я от V связана с медленным восстановлением кислорода, в различных формах присутствующего на поверхности угля. Из рисунка 2 видно также, что еще более сильная зависимость наблюдается при вычитании фона и для платинированного угля. Такое аномальное поведение осажденной на уголь платины можно объяснить влиянием кристаллов платины на свойства носителя. Возможно, что адсорбция водорода на платинированном угле происходит на соседних с платиной участках угля, в то время как эти же места в отсутствие платины не адсорбируют водород. Водород на угольных участках может адсорбироваться гораздо медленнее, чем на платине, что приводит к зависимости величины адсорбции от скорости наложения потенциала. Аналогичное представление было высказано авторами [13], изучавшими активированную адсорбцию водорода на платинированном угле из газовой фазы при температурах выше 300°, а также Д. В. Сокольским и Е. И. Гильдебранд [14], которые исследовали адсорбцию водорода из раствора на платине и палладии, нанесенных на окись алюминия. [c.221]


    Мы исследовали каталитические свойства иридиевых катализаторов на окиси алюминия в реакции жидкофазного гидрирования органических соединений с различными типами непредельной связи. Прослежено влияние количества металла в активной фазе (1—5 вес. "/о 1г) и природы применяемого растворителя на активность иридиевых катализаторов. В настоящем сообщении приводятся экспериментальные данные по гидрированию непредельных соединений на 2 % -ном иридиевом катализаторе в среде 96%-ного этанола при температурах 20, 30, 40°. Иридий наносили на окись алюминия марки А-1 из водного раствора хлориридата аммония методом адсорбции [12]. Перед опытами катализатор был восстановлен в токе водорода при температуре 300° в течение одного часа. Гидрирование проводили на лабораторной установке для каталитического гидрирования с контролем потенциала катализатора [13]. Навеску гидрируемого вещества брали в расчете на поглощение 100 мл водорода (НТД). Восстановление нитросоединений проводили на 0,2 г катализатора, при гидрировании остальных соединений навеска катализатора была 0,5 г. Объем растворителя во всех случаях составлял 30 мл. [c.367]

    В США [10 ] фирмой Бабкок и Вилькокс на опытной установке проверялась эффективность различных присадок, повышающих температуру плавления золы, влияние их на количество и свойства отложений в интервале температур поверхностей 405— 735° С, характерном для условий работы пароперегревателей. Присадки смешивались с топливом до его сжигания. Считалось, что при этом увеличивается эффективность присадок вследствие равномерного диспергирования их в топливе и более тесного контакта с золой топлива во время горения. В качестве присадок опробованы алюминиевые металлические хлопья, алюминат натрия, алюминат кальция, окись алюминия гидратированная, алюминиево-магнезиальная смесь, каолин, силиций, этилсиликат, окись кальция, карбонат кальция, окись магния и карбонат [c.457]

    Процессы, протекающие при нагревании шихт разнообразных по составу стекол, достаточно изучены. Процесс образования силикатов и боросиликатов в обычных эмалевых шихтах завершается при температурах 800—900° С. При этих температурах может быть проведена варка большей части эмалей при условии, что компоненты вводятся в шихту в чрезвычайно раздробленном виде и что для варки имеется достаточное количество времени. Однако силикатный расплав, нагретый даже до температуры 1400° С и выше, содержит еще небольшое количество неразложившихся карбонатов и воды. Остаточная вода в стеклах содержится в незначительных количествах 25—90 см водяного пара в 100 г стекла, но она оказывает влияние на вязкость и другие свойства стекол. Особенно склонны удерживать воду стекла и эмали, содержащие борный ангидрид и окись алюминия. Из борного ангидрида, например, вода полностью удаляется лишь прокаливанием при температуре 1400° С в течение 4 ч [19—21], [c.44]


    Возникновение и влияние дефектов решетки в случае изоляторов, и в частности пористых веществ (силикагель, окись алюминия), которые мы использовали в опытах, в принципе очень сходны с этими явлениями для полупроводников. В изоляторах присутствует очень малое число свободных носителей тока, и поэтому относительно малые дозы энергии способны заметно изменять их свойства. Однако ширина запрещенной зоны между валентной зоной и зоной проводимости очень велика, и явления становятся более сложными. Дефекты решетки, созданные искусственным путем под действием облучения, вероятно, играют большую роль как в явлениях захвата, так и в рекомбинации носителей тока. Ниже этот вопрос будет рассмотрен более подробно. Резюмируя, можно сказать, что образование дефектов соответствует возникновению новых примесных уровней в облученном твердом теле. Их продолжительность жизни в общем случае довольно велика и может даже иметь квазипостоянный характер при комнатной температуре. [c.218]

    Влияние способа приготовления на свойства алюмо-молибденовых катализаторов было также изучено на реакциях риформинга чистых углеводородов. Рассел и Стокс [141, 142] изучали реакции к-гептана над алюмо-молибденовыми катализаторами при атмосферном давлении. В этих условиях в основном протекали реакции дегидроциклизации (с образованием толуола), крекинга и коксообразования. В результате исследований алюмо-молибденовых катализаторов при риформинге смесей к-гептана и цикло-гексана была получена детальная информация о реакциях индивидуальных углеводородов [55]. Результаты исследований в присутствии катализаторов, полученных тремя различными методами, — окиси молибдена, нанесенной на гель окиси алюминия окиси молибдена, нанесенной на П-окись алюминия соосажденных окисей молибдена и алюминия, приведены в табл. 11. Наблюдаются довольно заметные отличия их в отношении к нагреванию при температуре 538—760° и в их активности, особенно в катализируемых кислотами реакциях изомеризации и крекинга. [c.498]

    Влияние содержания окиси алюминия. Чапетта и Хантер [38] для определения характера влияния количества окиси алюминия на свойства катализатора никель — окись кремния — окись алюминия приготовили серию катализаторов, используя отмыты гидрогели карбоната никеля, окиси кремния и алюминия. Содержание окиси алюминия в катализаторе изменялось в пределах 2—95%. Концентрацию никеля во всех этих образцах катализаторов поддерживали постоянной (около 5%). Результаты изомеризации к-гексана в присутствии этих катализаторов при сравнимых условиях приведены в табл. 57 и 58. На рис. 83 степень превращения к-гексана представлена в виде функции температуры реакции. Степепи превращения к-гексана для катализаторов. [c.579]

    Клинкерообразование при спекании, включаа равновесные и неравновесные расплавы, специально изучалось Шпоном на основе диаграммы системы кремнезем — окись алюминия — окись кальция по Ранкину (см. Б. И, 230 и ниже) и системы —кремнезем — окись алюминия — окись кальция — окись железа по Ли и Паркеру (см. В. II, 317 и ниже и D. III, i54 и ниже). Шпон разобрал частный случай, когда окись алюминия и окись железа присутствуют в эквимолекулярных количествах. Минимальная температура обжига в опытах Шпона составляла 1455— 1470 С. При таких высоких температурах спекшийся продукт вместе с прилегающей к футеровке фазой представлял собой расплав, в котором равновесие устанавливалось относительно быстро. Однако при охлаждении конечного продукта происходит отклонение от равновесия, зависящее от скорости охлаждения . Поэтому зафиксированное закалкой равновесие, достигнутое при максимальных температурах обжига, определяет свойства продуктов. Линия, соединяющая фигуративную точку трехкальциевого силиката с эвтектической точкой при температуре 1470°С (фиг. 5(12), согласно этим условиям фазового равновесия служит теоретической границей предела окиси кальция , т. е. критическим порогом постоянства объема для клинкерного продукта, без вредного влияния свободной извести. Такому пределу соответствует формула, которая до некоторой степени идентична эмпирически выведенным схемам расчета оптимального состава сырья она приводится Шпоном в виде номограммы. Однако, как показывает практика, в результате неодинаковых условий в печах образуются и различные продукты, состав которых не соответствует расчетному. [c.772]

    Недавно Фурукава и др. [13—15] обнаружили, что при использовании в качестве катализатора окиси алюминия ацетальдегид полимеризуется с образованием высокомолекулярного продукта и без замораживания. Выход полимера в этом случае выше, чем при полимеризации методом замораживания. Ацетальдегид в виде паров или в растворе добавляли к катализатору из у-окиси алюминия, охлажденному сухим льдом. При этой температуре смесь через несколько часов становится вязкой и иревраш,ается в желеобразную массу. Полимер, образующийся по этому способу, представляет собой каучукоподобног твердое вещество, структурно аналогичное по данным ИК-спектроскопии продукту полимеризации замороженного мономера. В табл. 34 показано влияние термообработки окисноалюминие-вого катализатора и температуры полимеризации на ход реакции. Из данных таблицы можно видеть, что степень дегидратации, как и температура обжига окиси алюминия, оказывает заметное влияние на каталитическую активность. При температуре от —15 до —10° полимеризации не наблюдается. Это явление связано с тем фактом, что предельная температура полимеризации ацетальдегида в присутствии металлоорганического катализатора составляет примерно —40°. При —184° степень конверсии значительно ниже, чем при —70°. Данные последних двух опытов в табл. 34 свидетельствуют о высокой каталитической активности окиси алюминия даже при температуре значительно ниже точки замерзания ацетальдегида, при которой имеет место полимеризация замороженного мономера. Чистая окись алюминия, полученная из очищенного изопропилата алюминия, по-видимому, более активна, чем стандартная гранулированная окись алюминия. Это различие в свойствах можно отнести за счет присутствия примесей и физической природы поверхности катализатора. [c.114]


    Химические свойства. Весьма реакционноспособное соединение это объясняется его строением как полного хлорангидрида угольной кислоты. При обыкновенной температуре и отсутствии влаги Ф. довольно устойчив, при соприкосновении с влагой воздуха дымит вследствие образования соляной кислоты. Разлагается при действии холодной воды довольно медленно, а под действием горячей воды значительно быстрее по уравнению С0С1г + НгО = СОг + 2НС1. Под влиянием света и при нагревании, начиная с температуры около 200°, диссоциирует на хлор и окись углерода. С аммиаком образует мочевину. Способен к реакциям присоединения в частности важна реакция с гексаметилентетрамином (уротропин). Легко вступает в реакцию с аминами, что используется при производстве азокрасителей (Амиантов). Действует на металлы, в особенности во влажном состоянии, главным образом, на алюминий, свинец. Разрушает резину (каучук). [c.210]


Смотреть страницы где упоминается термин Влияние температуры на свойства окиси алюминия: [c.494]    [c.511]    [c.167]   
Смотреть главы в:

Производство активной окиси алюминия - носителя катализаторов для гидрогенизационных процессов -> Влияние температуры на свойства окиси алюминия




ПОИСК





Смотрите так же термины и статьи:

Алюминий Свойства



© 2025 chem21.info Реклама на сайте