Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Золото оксид

    При растворении золота в царской водке образуются хлорид золота (III) и оксид азота (II)  [c.171]

    По сравнению с хлором фтор F гораздо более активен. Он реагирует почти со всеми химическими элементами, со щелочными и щелочноземельными металлами даже на холоде. Некоторые металлы (Mg, Al, Zn, Fe, Си, Ni) на холоде устойчивы к действию фтора из-за образования пленки фторидов. Фтор — самый сильный окислитель из всех известных элементов. Он единственный из галогенов не способен проявлять положительные степени окисления. При нагревании фтор реагирует со всеми металлами, в том числе с золотом и платиной. Он образует ряд соединений с кислородом, причем это единственные соединения, в которых кислород электроположителен (например, дифторид кислорода OFa). В отличие от оксидов эти соединения называют фторидами кислорода. [c.108]


    Разложение оксида азота (I) на поверхности золота при высоких температурах протекает по уравнению N20 N2 + 0. Кон- [c.109]

    Отсутствие надежных данных по кислородному перенапряжению объясняется сложностью процесса анодного образования кислорода и почти неизбежным наложением на него побочных и вторичных реакций. Прежде всего необходимо напомнить, что обратимый кислородный электрод экспериментально реализовать чрезвычайно сложно, и, следовательно, входящая в уравнение (20.5) величина не определяется опытным путем. Ее обычно рассчитывают теоретически. Для выделения газообразного кислорода из растворов кислот необходимо, чтобы потенциал анода был более положительным, чем равновесный потенциал кислородного электрода ( + 1,23 В при ан = 1 и 25° С), на величину кислородного перенапряжения, отвечающую данной плотности тока. Однако еще до достижения такого высокого положительного потенциала больщинство металлов термодинамически неустойчивы, и вместо реакции выделения кислорода идет процесс их анодного растворения или окисления. Для изучения кинетики выделения кислорода из кислых сред можно использовать поэтому только металлы платиновой группы и золото (стандартные потенциалы которых ноложительнее потенциала кислородного электрода), а также некоторые другие металлы, защищенные от растворения в кислотах стойкими поверхностными оксидами. В щелочных растворах, где равновесный потенциал кислорода менее положителен (при аоп-= 1 и 25° С он составляет около +0,41 В), в качестве анодов применяют также металлы группы железа, кадмий и некоторые другие. Установлено, что в условиях выделения кислорода поверхность всех металлов, включая платину и золото, оказывается в большей или меньшей степени окисленной, и поэтому кислород выделяется обычно не на самом металле, а на его оксидах. [c.421]

    Напишите формулы а) двух оксидов золота, в одном из которых золото одновалентно, а в другом — трехвалентно, б) оксида кадмия (II), в) двух оксидов хрома, в одном из которых хром трехвалентен, а в другом — шестивалентен. [c.10]

    Азотная кислота действует почти на все металлы (за исклю-ением золота, платины, тантала, родия, иридия), превращая их нитраты, а некоторые металлы — в оксиды. [c.413]

    Поскольку из исходной смеси металлов с концентрированной азотной кислотой взаимодействует только медь, то по объему выделившегося оксида азота(IV) (6,72 л) по уравнению (1) можно рассчитать количество растворенной меди. Оно равно 9,6 г. Так кйк медь и золото в соляной кислоте не растворяются, то по уравнению (2), зная [c.87]

    Известны соединения меди в степенях окисления +1, +2 и +3. Последние, однако, малочисленны и ограничиваются простми и сложными оксидами и фторидами. Гораздо более распространены соединения меди (I) и меди (II). Соединения одновалентной меди менее устойчивы и похожи на аналогичные соединения серебра и золота (I). Соли двухвалентной меди по свойствам гораздо ближе к солям других двухзарядпых катионов переходных металлов. Эти особенности меди неразрывно связаны с ее электронным строением. Основное состояние атома меди 3< 4з обусловлено устойчивостью заполненной а -оболочки (ср. с атомом хрома), однако первое возбу кденное состояние 3d 4s превышает основное по энергии всего на 1,4 эВ (около 125 кДж/моль). Поэтому в химических соединениях проявляются в одинаковой мере оба состояния, дающие начало двум рядам соединений меди (I) и (II). [c.159]


    Свойства. Щелочные металлы Ыа, К, КЬ, Сз — легкоплавкие металлы. Ы, Ыа, К, КЬ имеют серебристо-белую окраску, а Сз — золотисто-желтую, не такую яркую как у золота, но вполне заметную. Находящиеся под керосином щелочные металлы бывают покрыты слоем нз оксидов и пероксидов (литпй — смес1 .ю нитрида и оксида) . На воздухе они легко окисляются (КЬ и Сз — самовозгораются), реакция ускоряется под действием влаги в совершенно сухом кислороде при комнатной температуре натрий не окисляется н сохраняет блестящую поверхность. Литий приблизительно такой же мягкий, как свинец, натрий — как воск. К, КЬ и Сз — еще мягче. Щелочные металлы обладают высокой сжимаемостью, электро- и теплопроводностью. Литий — самое легкое из твердых веществ, существующих прп комнатной температуре. Некоторые свойства щелочных металлов указаны в табл. 3.1 Работа со щелочными металлами требует боль иой осторожно сти,. гак как они легко загораются, бурно реагируют с водой многими другими веществами. При длительном хранении в керо сине калий покрывается слоем надпероксида, который при разре зании металла может с ним интенсивно реагировать, вызывая загорание и разбрызгивание горящей массы. [c.299]

    Золото не реагирует с кислородом воздуха. Это является одной из причин широкого использования золота для изготовления декоративных предметов, которые мы хотим сохранить в течение долгого времени (например, факел у статуи Свободы). Надежность электрических контактов, покрытых золотом, обусловлена тем, что на их поверхности не образуются непроводящие электричество оксиды. [c.129]

    Для большинства высокотемпературных реакций используются металлические катализаторы. Они могут быть в виде металла, нанесенного на тугоплавкий носитель, такой, как плавленый оксид алюминия, смешанный оксид алюминия и магния, алюмосиликат, например муллит, алюминат магния (шпинель) и смешанный тугоплавкий оксид алюминия и хрома. Оксид хрома может обладать собственной каталитической активностью, и поэтому его следует тщательно исследовать, прежде чем использовать в качестве носителя. Наоборот, если возможно получить бифункциональный катализатор, в котором действие металла дополняется действием носителя, то хром в этом случае может принести существенную пользу. К числу металлов, используемых как катализаторы дегидрирования, принадлежат медь, серебро и иногда золото. Такие благородные металлы, как платина, палладий, родий и рутений, можно использовать при очень высоких температурах, а серебро недостаточно устойчиво при температурах выше 700 °С. [c.142]

    Красители, придающие стеклу необходимый цвет оксиды и соли металлов, образующие в стекле коллоидные растворы меди (I), железа (П), кобальта (П), хрома (Ш), хлорида золота, сульфата меди (II) и др. [c.316]

    Небольшое число металлов (золото, серебро, платина, ртуть) встречается в природе в свободном состоянии. Большинство же находится в форме минералов и руд. Среди наиболее распространенных природных соединений металлов — оксиды, сульфиды, карбонаты, силикат , , сульфаты. [c.142]

    Во вторичной реакционной зоне окисление горючих газов идет до конца, т. е. в случае углеводородов — до образования СОг и НгО. В этой зоне преобладают радикалы с окислительным действием (НзО-, СО-, 0-, ОН-, N0-, НСО-), и она является предпочтительной для наблюдений атомной абсорбции элементов, не образующих термостойких оксидов (медь, серебро, золото, цинк, марганец и т. п.). Измерения в этой зоне характеризуются наибольшей стабильностью и наименьшими шумами. [c.146]

    В концентрированной азотной кислоте золото не растворяется, тогда как медь взаимодействует с ней, образуя нитрат меди (II) и оксид азота (IV)  [c.171]

    Зная объем выделившегося оксида азота (И), рассчитываем количество золота, растворившегося в царской водке, оно равно 39,4 г (уравнение 2). [c.171]

    Рассматриваемые элементы характеризуются большой инертностью, причем химическая активность уменьшается от меди к золоту. Так, с кислородом непосредственно взаимодействует только медь при наг(>евании. Серебро и золото даже при нагревании на воздухе не окисляются. Оксиды серебра и золота легко образуются при разложении соответствующих гидроксидов, например  [c.226]

    В вертикальных столбцах таблицы — группах располагаются элементы, обладающие одинаковой валентностью в высших солеобразующих оксидах (она указана римской цифрой). Каждая группа разделена на две подгруппы, одна из которых (главная) включает элементы малых периодов и четных рядов больших периодов, а другая (побочная) образована элементами нечетных рядов больших периодов. Различия между главными и побочными подгруппами ярко проявляются в крайних группах таблицы (исключая VIII). Так, главная подгруппа I группы включает очень активные щелочные металлы, энергично разлагающие воду, тогда как побочная подгруппа состоит из меди Си,серебра Ag и золота Аи, малоактивных в химическом отношении. В VII группе главную подгруппу составляют активные неметаллы фтор F, хлор С1, бром Вг, иод I и астат At, тогда как у элементов побочной подгруппы — марганца Мп, технеция Тс и рения Re — преобладают металлические свойства. VIII группа элементов, занимающая особое положение, состоит из девяти элементов, разделенных на три триады очень сходных друг с другом элементов, и подгруппы благородных газов. [c.22]


    Озон — один из сильнейших окислителей. Он окисляет все металлы, кроме золота и платиновых металлов, а также большинство неметаллов. Он переводит низшие оксиды в высшие, а сульфиды металлов — в их сульфаты. В ходе большинства этих реакций молекула озона теряет один атом кислорода, переходя в молекулу О2. [c.456]

    В первой группе — медь, серебро, золото. Оксиды серебра и золота прп пагрсванпи в атмосфере водорода могут вызвать взрыв. Поскольку оксиды этих металлов разлагаются при простом нагревании, описанный метод для их получения не используют. Водород, применяемый для восстановления оксидов, в какой-либо специальной очистке не нуждается (ч. II, I). [c.12]

    Ртуть и ее соединения находят широкое применение в промышленности. Из ртути изготавливают катоды при электрохимическом получении хлора и щелочей. Парами ртути заполняют люминесцентные лампы. Амальгамы используются в металлургии для извлечения некоторых металлов, например золота. Оксид ртути (II) НдО используется для получения красок, которыми окрашивают днища морских судов, прп этом они не обрастают водорослями. Сулема НдСЬ используется в сельском хозяйстве как ядохимикат. [c.257]

    Известны два ряда соединений золота, отвечающие степеням окисленности +1 и -f3. Так, золото образует два оксида — оксид эолота ), или закись золота, АигО и оксид золога(И1), или окись золота, AU2O3. Более устойчивы соединения, в которых золото имеет степень окисленности -j-3. [c.580]

    Нагреванием смеси порошкообразных олова (или его амальгамы), серы и ЫН4С1 (для удаления с поверхности олова препятствующей реакции пленки оксида) получают пЗг в виде золотистых металлически блестяигих чешуек (сусальное золото). Его используют для приготовления бронзовой краски. [c.386]

    Не подворгаются действию ННОз только золото, платина, родий, рутений, иридий и тантал. Концентрированная кислота пассивирует алюминий, железо и хром из-за образования нерастворимых пленок оксидов  [c.123]

    Для получения качественного изображения применяют образцы очень малой толщины, которые наносят на тонкие подложки из аморфного материала. Увеличение толщины образца не только ухудшает качество фотографии, но и может привести к его термодеструкции. Очень часто наблюдают не сами объекты, а пользуются репликами (пленки-отпечатки). Метод реплик является косвенным методом изучения микрорельефа поверхности. В качестве материала для реплик используют формвар, вещества типа коллодия и оксид 5162(510), конденсированный в высоком вакууме из паровой фазы. Для усиления контрастности изображения обычно проводят оттенение реплик с помощью напыления на них слоя тя келых металлов (уран, палладий, золото, хром, никель). Напыление проводят путем возгонки металла при высоком вакууме на реплику наносят два-три атомных слоя. [c.251]

    Окраска многих минералов и драгоценных камней обусловлена наличием в них высокодисперсных частиц металлов и их оксидов. Например, прозрачные рубиновые стекла обязаны своей окраской наличию К0ЛЛ011ДНЫХ частиц оксидов золота, железа. Нельзя не отметить, что практически всем краскам и эмалям цвета сообщаются дисперсными ппгментами из оксидов и солей металлов (титана, железа, олова, меди и др.). [c.267]

    Царская водка. Нагревают серебряную проволоку и листовое золото с азотнйй кислотой средней концентрации. Серебро растворяется с выделением оксидов азота. Золото удается перевести в раствор лишь после добавления трехкратного количества конц. НС1. Растворению золота благоприятствует образование комплексной кислоты. [c.548]

    Медь образует два оксида СизО — полуокись и СиО —окись. Дигйдроксид Си (ОН) 2 термически неустойчив и разлагается при слабом нагревании Си(ОН)2=СиО-+Н2О. Гидроксиды СиОНиАдОНразлагаются в момент их образования. Дигидроксид меди Си (ОН) 2 — слабое основание. Тригидроксид золота Аи (ОН) 3 —амфотерное соединение с преобладанием кислотных свойств. [c.103]

    Красивая и яркая окраска многих драгоценных и полудрагоценных камней (рубинов, изумрудов, топазов, сапфиров) обусловлена содержанием в них ничтожных (не определимых даже на лучших аналитических весах) количеств примесей тяжелых металлов и их оксидов, находящихся в коллоидном состоянии. Так, для искусственного получения яркого рубинового стекла, употребляемого для автомобильных, велосипедных и прочих фонарей, достаточно на 1000 кг стеклянной массы добавить нсего лишь 0,1 кг коллоидного золота. [c.297]

    Озон химически активен, окисляет даже золото до оксида золота (I), серебро до пероксида серебра (I), иодид ионы в растворе К1, непредельные уптеводороды. [c.295]

    Цветные стекла образуются в результате диспергирования в силикатном стекле примесей металлов или их оксидов, придающих стеклз окраску. Например, рубиновое стекло содержит 0,01—0,1% золота с размером частиц 4—30 мкм. Эмали — это силикатные стекла с включениями пигментов (ЗпОг, TiOa, ZrOa), придающих эмалям [c.291]

    Кислород образует соединения со всеми химическими элементами, кроме гелия, неона и аргона. С большинством элементов он взаимодействует непосредственно (кроме галогенов, золота и платины). Скорость взаимодействия кислорода как с простыми, так и со сложными веществами зависит от природы вещества и от температуры. Некоторые вещества, например оксид азота (II), гемоглобин крови, уже при комнатной температуре соединяются с кислородом воздуха со значительной скоростью. Многие реакщ1и окисления ускоряются катализаторами. Например, в присутствии дисперсной платины смесь водорода с кислородом воспламеняется при комнатной температуре. Характерной особенностью многих реакций соединения с кислородом является выделение теплоты и света. Такой процесс называется горением. [c.455]

    Известны два ряда соединений золота, отвечающие степеням окисления -1-1 и +3. Так, золото образует два оксида — оксид золота (1) АигО и оксид золота (III) AU2O3. Более устойчивы соединения, в которых золото имеет степень окисления 4-3. [c.540]

    С, т. кип. 86° С. Смешивается с водой во всех отношениях. Азеотроп-ная смесь с водой содержит 68,4% НХОз и кипит при 121,9° С. Обычная 96—98%-ная НКОз — жидкость красно-бурого цвета. А. к. — сильный окислитель, реагирует почти со всеми металлами, образуя с ними соответствующие оксиды или соли — нитраты и выделяя оксиды азота. Устойчивы к действию А. к. золото, платина, родий, иридий и тантал. Такие металлы, как железо, хром, алюминий, пассивируются концентрированной А. к. за счет стойкости к действию А. к. оксидной пленки, образующейся на ее поверхности. Концентрированная А. к. окисляет серу до серной кислоты, фосфор — до фосфорной. Многие органические соединения под действием А. к. разрушаются и воспламеняются. Разбавленная А. к. более слабый окислитель, чем концентрированная продуктами восстановления ее сильными восстановителями могут быть гемиоксид азота, свободный азот н нитрат аммония. В лаборатории А. к. получают действием на ее соли концентрированной N3804 при нагревании. В промышленности разбавленную (45—55%) А. к. получа- [c.11]


Смотреть страницы где упоминается термин Золото оксид: [c.92]    [c.51]    [c.51]    [c.51]    [c.309]    [c.377]    [c.583]    [c.589]    [c.326]    [c.321]    [c.126]    [c.93]    [c.185]    [c.541]   
Учебник общей химии (1981) -- [ c.416 ]




ПОИСК





Смотрите так же термины и статьи:

Хлорид-оксид золота III



© 2025 chem21.info Реклама на сайте