Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрические свойства полупроводников

    Самую большую и разнообразную группу составляют полупроводники, т. е. вещества со значениями электропроводности в интервале примерно от Ю" до 10 ом -см . К ним относятся многие простые тела (германий, кремний, бор, иод), сплавы (например, сплав цинка с сурьмой), различные неорганические соединения (окислы, сульфиды) и довольно большое число органических веществ (сложные ароматические соединения, белки, ряд синтетических полимеров). Однако особенности электрических свойств полупроводников не ограничиваются только величинами электропроводности. Одним из наиболее существенных отличий полупроводника от металла является характер зависимости электропроводности от температуры. В то время как сопротивле- [c.274]


    При повышении температуры проводимость полупроводников в отличие от металлов обычно возрастает (см. 2). Электропроводность диэлектриков тоже возрастает. При температуре, близкой к абсолютному нулю, проводимость полупроводников и диэлектриков практически нулевая. По электрическим свойствам полупроводники стоят ближе к диэлектрикам, чем к металлам, от которых они имеют принципиальное качественное отличие. [c.232]

    Зависимость электрических свойств полупроводников от температуры и освещенности объясняется электронным строением их кристаллов. Здесь, как и у изоляторов, валентная зона отделена от зоны проводимости запрещенной зоной (рис. 33.1, полупроводник). Однако ширина запрещенной зоны АЕ в случае полупроводников невелика. Поэтому при действии квантов лучистой энергии или при нагревании электроны, занимающие верхние уровни валентной зоны, могут переходить в зону проводимости и участвовать в переносе электрического тока. С повышением температуры или увеличении освещенности число электронов, [c.635]

    На рис. 97 приведена простая (стандартная или параболическая) структура зон. Она часто используется при качественном рассмотрении электрических свойств полупроводников. Характеризуется эта модель тем, что обе зоны имеют невырожденные экстремумы в центре приведенной зоны Бриллюэна, т. е. в точке [c.235]

    Основные электрические свойства полупроводников определяются примесями, содержащимися в пределах 10 %. Очистка этих материалов от примесей или введение в них заданного количества примесей встречает серьезные технологические трудности. [c.25]

    Так как примеси влияют на электрические свойства полупроводников, к чистоте полупроводниковых материалов и к регулярности их кристаллической структуры предъявляются высокие требования. [c.287]

    Электрические свойства полупроводников и диэлектриков во многом определяются степенью заполнения электронами валентной зоны и шириной запрещенной зоны между верхней границей валентной зоны и нижней границей зоны проводимости. Любой процесс, происходящий с электронами, сводится к изменению их состояний. Но если в пределах зоны все состояния заполнены, то в этой зоне невозможны никакие изменения скорости, энергии, направления спина. Поэтому электроны целиком заполненной валентной зоны не могут участвовать в переносе электрических зарядов, оставаясь в этой зоне. Для металлов характерно, что валентная зона заполнена частично, у диэлектриков и полупроводников при Т — О все электроны находятся в валентной зоне, а при Г > О электроны частично заполняют зону проводимости. [c.42]


    Вводя в один и тот же кристалл полупроводника примеси различного характера, можно, изменяя характер проводимости, создавать различные электронные схемы (диоды, триоды, тетроды и т. д.). Влияние примесей на электрические свойства полупроводников и объясняет те высокие требования, которые предъявляются к чистоте полупроводниковых материалов и к их кристаллической структуре, которая должна обладать наименьшей концентрацией несовершенств (дислокации, блоки, вакансии). [c.448]

    Становление науки о полупроводниках обязано не только химическим методам получения и очистки веществ, но также использованию химических представлений и химической теории. В частности, поведение электронов и дырок в полупроводниках (см, рис. 10.22) подчиняется закону действия масс и законам химического равновесия. Подобно тому как концентрация реагентов влияет на скорость химической реакции, концентрация электронов и дырок влияет на проводимость и другие электрические свойства полупроводников. Это позволяет предсказывать электрические свойства полупроводников и связывать их со степенью чистоты полупроводниковых веществ путем применения основных химических представлений и законов. [c.400]

    Свойства и применение (см. также табл. 26). Хрупкий с серебряным блеском металл. По электрическим свойствам — полупроводник. Па воздухе [c.331]

    ЛИЧИНЫ контактной разности потенциалов, которая дает значение разности работ выхода исследуемого полупроводника и электрода сравнения и определяется так называемым методом вибрирующего конденсатора. Корреляция между изменением работы выхода в результате введения добавок и активностью катализатора в исследуемой реакции может дать сведения о путях улучшения свойств данного катализатора. То обстоятельство, что одни и те же факторы могут влиять как на каталитическую активность, так и на оптические и электрические свойства полупроводника, позволяет связывать каталитические исследования с измерением красной границы внешнего фотоэффекта полупроводника. [c.35]

    Глава 21. Электрические свойства полупроводников [c.4]

    ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА ПОЛУПРОВОДНИКОВ [c.341]

    Измерение электрических свойств полупроводников [c.174]

    При высоких температурах (выше 300°) реакция очень чувствительна к дефектам в решетке (Парравано, Шваб), и ее следует связывать с электрическими свойствами полупроводника [101]. [c.143]

    Электрические свойства полупроводников [c.72]

    Влияние примесей на электрические свойства полупроводников и объясняет те высокие требования, которые предъявляются к чистоте полупроводниковых материалов и к их кристаллической структуре, которая должна обладать наименьшее концентрацией несовершенств (дислокации, блоки, вакансии). [c.434]

    На электрические свойства полупроводников влияют не только посторонние примеси, но и всякие изменения и нарушения в структуре их кристаллических решеток. [c.250]

    Электрические свойства полупроводников и диэлектриков во многом определяются степенью заполнения электронами валентной зоны и шириной запрещенной зоны АЕ между верхней границей валентной зоны и нижней границей зоны проводимости (рис. 7). Любой процесс, происходящий с электронами, сво-// ///Ш.//и/, дится к изменению их состояний. Но если в пределах зоны все состояния заполнены, [c.22]

    Зависимость электрических свойств полупроводников от температуры и освещенности объясняется электронным строением их кристаллов. Здесь, как и у изоляторов, валентная зона отделена от зоны проводимости запрещенной зоной (рис. 139, полупроводник). Однако ширина запрещенной зоны А в случае полупроводников невелика. Поэтому при действии квантов лучистой энергии или [c.529]

    Зависимость электрических свойств полупроводников от температуры и освещенности объясняется электронным строением их кристаллов. Здесь, как и у изоляторов, валентная зона отделена от зоны проводимости запрещенной зоной (рис. 138, полупроводник). Однако ширина запрещенной зоны IS.E в случае полупроводников невелика. Поэтому при действии квантов лучистой энергии или при нагревании электроны, занимающие верхние уровни валентной зоны, могут переходить в зону проводимости и участвовать в переносе электрического тока. С повышением температуры или при увеличении освещенности число электронов, переходящих в зону проводимости, возрастает в соответствии с этим увеличивается и электропроводность полупроводника. [c.535]

    Влияние локальных искажений кристаллической решетки на электрические свойства полупроводников зонная теория объясняет появлением новых разрешенных энергетических уровней в запрещенной зоне, положение которых определяется как природой решетки, так и природой дефектов. [c.158]

    В табл. 33 приводятся некоторые физико-химические и электрические свойства полупроводников типа А2В3 с дефектной тетраэдрической структурой (для наиболее изученных модификаций). [c.149]


    Так как германий, а в последние годы и кремний, нашли очень широкое применение в радиоэлектронике, то сейчас имеется большое число работ в периодических изданиях, посвященных получению этих веществ в чистом состоянии, исследованию их полупроводниковых свойств и т. д. Вышли из печати специальные сборники, посвященные этим полупроводникам [37—42], в которых сообщаются данные об электрических, термоэлектрических, гальваномагнитных, оптических и других свойствах элементов — полупроводников. Поэтому ниже мы приведем только сведения об основных физико-химических и электрических свойствах полупроводников этой группы. Вопросы получения и очистки будут затронуты очень кратко. [c.57]

    Серое олово не нашло практического применения. Но его исследования имели большое научное значение, так как впервые продемонстрировали связь электрических свойств полупроводников с их химической природой — положением в периодической системе, кристаллической структурой и типом связи. Впервые оказалось возможным делать прогнозы в отношении электрических свойств еще неизученных веществ. Это, несомненно, имело большое значение для дальнейшего развития как химии, так и физики полупроводников. [c.80]

    Электрические свойства полупроводников резко меняются в зависимости от условий внешней среды. Влажность окружаю-ш,его воздуха, давление, изменение температуры — все это строго закономерно изменяет сопротивление полупроводника, а измерение сопротивления — одна из простых и точных операций. Можно также измерять температуру почвы на любой глубине, температуру поверхности листа, стебля и др. [c.333]

    Все электрические свойства полупроводников, из которых электропроводность является самым наглядным примером, зависят от количества носителей тока (электронов и дырок). Количество носителей тока в элементарных полупроводниках (таких, как кремний или германий) обычно определяется концентрацией элементов-примесей III и V групп. Каждый из этих элементов обеспечивает точно один электрон проводимости или дырку на один атом примеси (но не при низких температурах). Иногда другие электрически активные примеси дают непосредственно электроны или дырки. Полезная концентрация носителей тока может составлять 1 носитель на 10 атомов кристалла. Отсюда следует, что чистота исходного материала должна быть значительно выше и концентрация примесей, вводимых в материал для создания носителей тока, должна быть выше остаточных примесей. [c.26]

    С практической и технологической точки зрения очень важно знать процессы растворения, диффузии и сорбции для успешного развития производства и применения многих изделий, таких, например, как упаковочные пленки, защитные покрытия и др. Присутствие инородных веществ в твердом теле часто определяет его свойства. Пластификация высокополимеров и влияние следов примесей на электрические свойства полупроводников могут служить в этом отношении убедительными примерами. [c.229]

    Установлено, что при облучении быстрыми нейтронами или ионами заметно меняются многие свойства твердых тел тепло- и электропроводность, твердость и другие механические свойства, параметры кристаллической решетки. Многие из этих изменений аналогичны получаемым совсем другими путями, например при холодной обработке металлов. В большинстве случаев эффекты обратимы, исходные свойства можно восстановить в результате нагревания ( отжиг радиационных эффектов). При облучении нейтронами и другими тяжелыми частицами полупроводников существенное значение имеет образование в их решетке инородных (примесных) атомов в результате ядерных реакций. Так, например, с помощью дозированного облучения можно создавать в кристалле германия определенные примеси галлия и таким образом плавно изменять электрические свойства полупроводника. [c.129]

    Влияние дислокаций и других дефектов сказывается не только на росте кристалла и его механических свойствах, но и на электрических свойствах полупроводников, так как вызывают рассеяние носителей заряда. Дефекты решетки сильно влияют на оптические свойства некоторых кристаллов. Например, вакансии в анионной подрешетке галидов щелочных металлов являются центрами притяжения электронов. Когда в места таких вакансий попадают электроны, то возникают так называемые F-центры, вследствие чего бесцветные прозрачные кристаллы (Na l и др.) приобретают синюю или пурпурную окраску из-за поглощения света электронами, захваченными де ктами решетки. [c.146]

    В валентной концепции проводимости полупроводников с малой подвижностью носителей тока Р. Л. ]у1юллер развивает представления А. Ф. Иоффе о решающей роли локализованных валентных связей в электрических свойствах полупроводников. Р. Л, Мюллером проведен расчет предэкспонен-циального статистического множителя Оо в выражении для собственной ( в,  [c.4]

    В последние годы для объяснения электрических свойств полупроводников с малой подвижностью носителей развита теория поляронов малого радиуса [114]. Размер полярона, т. е. объем кристалла, который он занимает, обратно пропорционален силе элек-трон-фононной связи [122]. В зависимости от радиуса полярона (гп) различают поляроны большого радиуса (континуальные) и малого радиуса [123, 124]. Для полярона малого радиуса Гп < а (где а — постоянная решетки) связь носителей тока с колебаниями решетки очень сильна и рассеяние обусловлено многофонон-ными процессами. Механизм переноса заряда путем перескока возможен только в случае, когда носитель тока — полярой малого радиуса, т. е. интеграл перекрытия мал, а параметр электрон-фононной связи велик. Для перескока необходимо соблюдение неравенства [c.90]

    Первый цикл советских работ по электронной теории катализа оборвался со смертью Л. В. Писарл евского. Затем на протяжении более чем десяти лет по электронному механизму катализа не появлялось новых идей и обобщений ни у нас, ни за границей. Этот период покоя в электронной теории катализа, напротив, оказался очень продуктивным для развития электронной теории твердого тела. Наряду с развитием теории металлов (сверхпроводимость, теория магнитных свойств, теория сплавов и др.) был создан, в значительной мере трудами нашей советской физической школы А. Ф. Иоффе, новый, богатый приложениями раздел учения о твердом тело — физика полупроводников, теоретические основы которого были сформулированы Я. И. Френкелем и его учениками. Было установлено, что электрические свойства полупроводников регулируются микропримесями, отдающими и захватывающими электроны, а так ке отклонениями химического состава кристаллов от стехиометрии. Содержание и размещение микропримесей в твердом теле определяют концентрацию в нем электронов и электронных дырок и локальные изменения этой концентрации. [c.6]

    Изменение электрических свойств полупроводников под влиянием дислокаций определяется как появлением совсем новых энергетических уровней или даже зон [26, 36—43], так и изменением ширины запрещенной зопы, вызываемым полем дислокационных деформаций. Большинство авторов считают, что эти уровни описывают электронные состояния, возникающие на дислокациях вследствие наличия в их ядре разорванных, ненасыщенных связей. В зависимости от положения уровня Ферми относительно дислокационных уровней разорванные связи могут либо захватывать электроны из зоны проводимости, обусловливая акцепторное действие дислокаций, либо отдавать электроны в зону проводимости, обусловливая донор-ное действие. Между захваченными дислокацией электронами возникает кулоновское отталкивание. Поэтому не все акцепторные центры (ненасыщенные связи) заполнены. По расчетам Рида [36] коэффициент заполнения / дислокационных акцепторных уровней не может превышать величину 0,1. Если расстояние Л1еж-ду захваченныл1и электронами мало по сравнению со средним расстоянием между химическими донорами или акцепторами, то вокруг отрицательно заряженной дислокационной [c.246]

    Экспериментальные исследования влияния дислокаций на электрические свойства полупроводников связаны с определенными трудностями. При пластическом деформировании монокристаллов ковалентных полупроводников в температурном интервале пластичности наряду с дислокациями образуются точечные дефекты, перераспределяются примеси и изменяется их состояние. Вклад этих эффектов в некоторых случаях превосходит изменения, связанные с дислокациями [44—46], и может даже привести к инверсии типа проводимости образца [44, 45]. Все это вместе со сложностью создания кристаллов с заданной дислокационной структурой обусловило большую противоречивость экснерийшнтальных данных о положении дислокационных уровней, полученных при исследованиях эффекта Холла, фотопроводимости, рекомбинационного излучения [26, 40, 41]. [c.247]

    В последние годы были предприняты попытки [49— 52] развития методов экспериментального исследования локальных изменений электрических свойств полупроводников под влиянием индивидуальных дислока ций. Они открывают перспективы не только получения более определенных данных для сопоставления с теорией, но и поиска качественно новых эффектов, допускающих соз- [c.249]


Смотреть страницы где упоминается термин Электрические свойства полупроводников: [c.535]    [c.433]    [c.216]    [c.264]    [c.518]    [c.43]   
Смотреть главы в:

Химия твердого тела -> Электрические свойства полупроводников




ПОИСК





Смотрите так же термины и статьи:

Полупроводники

Полупроводники полупроводники

Электрические свойства



© 2025 chem21.info Реклама на сайте