Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радиационное изменение электрических свойств

    Развитие химической промышленности сопровождается не только количественным ростом энергопотребления, но и качественным изменением его. Это выражается во все более интенсивном внедрении в химическое производство таких новых видов энергии и воздействия на систему как плазмохимическое, ультразвуковое, фото- и радиационное воздействие, действие низковольтного электрического разряда и лазерного излучения. Эти экстремальные воздействия способствуют активации молекул реакционной системы, возникновению в ней возбужденных частиц и инициированию химического, в том числе, с высокой селективностью, процесса. Эта область явлений составляет новую отрасль химии — химию высоких энергий (ХВЭ), изучающую состав, свойства и химические превращения в системах, содержащих возбуждающие частицы. [c.66]


    Лучевое (у- и р-излучение) поражение экосистем, изменение электрических свойств атмосферы Изменение радиационных свойств атмосферы, изменение погоды и климата, ухудшение состояния экосистем из-за уменьщения солнечного излучения Изменение радиационных свойств атмосферы, изменение погоды и климата, нарущение озонового слоя Изменение климата [c.158]

    Р. с. характеризуют также, сопоставляя значения какого-либо физич. свойства исходного образца и образца, облученного дапной дозой. В случае обратимых изменений рассматриваемого свойства (например, электрической проводимости или ползучести) его измеряют непосредственно в радиационном 1 оле, а Р. с. определяют по зависимости значения свойства от мощности дозы. [c.127]

    При радиолизе феноло-формальдегидных пресскомпозиций с наполнителями — древесной мукой (К-18-2) и стекловолокном (АГ-4В), а также пресскомпозиций на основе феноло-формальдегидной смолы и бутадиен-нитрильного каучука с наполнителем — древесной мукой (ФКП-1) происходят изменения в каждом из компонентов — смоле и наполнителе. Радиационная стойкость этих материалов оценивалась по изменениям физико-механических и. электрических свойств и массы образцов. [c.280]

    Материал АГ-4В обладает более высокой радиационной стойкостью. Даже при дозе 2000 Мрад показатели механической прочности уменьшаются менее чем на 50%. Электрические свойства практически не изменяются. Не происходит суш ественных изменений прочностных свойств после облучения дозой 500 Мрад и пресскомпозиций на основе анилино-феноло-формальдегидной смолы (К-123). [c.281]

    Исследовалась радиационная стойкость компаундов К-115, К-153, К-519 и стеклопластиков ЭДП-2, ЭН-5 и других на основе эпоксидной смолы. У всех этих материалов наблюдается некоторое (иногда значительное) увеличение механической прочности и твердости при довольно небольших дозах. До доз около 200 Мрад прочность остается постоянной. Это, вероятно, обусловливается процессами сшивания эпоксидной смолы. Электрические свойства компаундов К-115, К-153 практически не меняются с дозой облучения. Наибольшие изменения претерпевают Ps и р , показатели которых увеличиваются на один порядок. У компаунда К-519 заметно изменяются Электрические свойства pj и р увеличиваются на три порядка при дозе 200 Мрад tgo уменьшается в 2 раза. [c.281]

    Исключительно высока также и радиационная стойкость Н-пленки [ Ч. После набора дозы в 10 ООО Мрад при облучении быстрыми электронами пленка не теряет гибкости и не изменяет электрические свойства. Изменения свойств не наблюдается и при продолжительном облучении тепловыми нейтронами (доза 5-10 нейтрон/см ). Следует отметить, что даже лучший из широко известных радиационностойких полимеров — полистирол — полностью разрушается при облучении дозами, в 15—10 раз меньшими. [c.165]


    Результаты радиационных испытаний эпоксидно-полиэфир-ного компаунда ЭЗК-9 и изменения его электрических свойств при облучении потоком электронов и протонов (табл. 27) показывают, что с увеличением потока частиц для этого материала характерно уменьшение удельного объемного ру и поверхностного р5 электрических сопротивлений и увеличение тангенса угла диэлектрических потерь при частотах от 50 Гц до 1 МГц. [c.102]

    Установлено, что при облучении быстрыми нейтронами или ионами заметно меняются многие свойства твердых тел тепло- и электропроводность, твердость и другие механические свойства, параметры кристаллической решетки. Многие из этих изменений аналогичны получаемым совсем другими путями, например при холодной обработке металлов. В большинстве случаев эффекты обратимы, исходные свойства можно восстановить в результате нагревания ( отжиг радиационных эффектов). При облучении нейтронами и другими тяжелыми частицами полупроводников существенное значение имеет образование в их решетке инородных (примесных) атомов в результате ядерных реакций. Так, например, с помощью дозированного облучения можно создавать в кристалле германия определенные примеси галлия и таким образом плавно изменять электрические свойства полупроводника. [c.129]

    Детально исследовано влияние радиационного облучения на физические свойства полиэтилена 2409-2426 Отмечено, что в результате облучения повышается стойкость полиэтилена к деформации при нагревании, а также к растрескиванию. При этом не происходит ухудшения электрических свойств, прочности и других ценных свойств полиэтилена 9 Например, у полиэтилена типа марлекс-50 прочность на разрыв под влиянием р-об-лучения (доза 50-10 рентген) изменяется от 290 до 320 кГ/см . Более эффективным оказалось у-облучвние. При дозе 10 чЮ рентген прочность на разрыв возрастала до 500 кГ/см , а ори дозе 100-10 рентген — до 585 кГ/см . Установлено, что в результате облучения происходит образование поперечных связей в полиэтилене, способствующее улучшению физико-механических свойств (теплостойкости, эластичности и др.) 24ю. Изучение анизотропных изменений в системе фибриллярных макромолекул с весьма высокой осевой ориентацией в процессе сшивания полимера при воздействии ионизирующего облучения показало, что длина в изотропном состоянии в результате процесса сшивания возрастает с ростом степени сшивания 2 ч. Для расплава получены значительно большие удлинения. При облучении полиэтилена в расплавленном состоянии размеры кристаллитов неограниченно уменьшаются с увеличением дозы облучения Скорость роста сферолитов при равной степени переохлаждения не зависит от дозы облучения температуры плавления полиэтилена (марлекс-50) составляли при облучении дозами О, 20, 40 и и 100 мрентген— 138, 128, 121 и 113° С соответственно 416 Описано влияние радиации на индекс расплава 2417. [c.286]

    В брошюре обобщен магериал по действию радиации на полимеры, опубликованный в отечественной и зарубежной литературе. Рассмотрены общие закономерности радиационной химии высокополимеров, возможные механизмы протекающих процессов и их особенности, изменение химических, физических, механических и электрических свойств полимеров при облучении. [c.2]

    В мощных радиационных полях широкозонные диэлектрики резко меняют многае свойства, в частности, электрическое сопротивление и уже не могут выполнять функции диэлектрического материала. Потребности техники вызвали активизацию фундаментальных исследований в области изучения электронных возбуждений и первичных радиационных дефектов, т.к. без понимания природы первичных процессов весьма сложно идентифицировать радиационно-химические реакции на последующих стадиях, приводящие к изменению свойств материалов. Исследование радиационно-стимулированной проводимости является перспективным методом изучения первичных процессов, поскольку несет информацию о генерации и последующей релаксации зонных носителей заряда. [c.76]

    Происходящие в результате внешних воздействий изменения молекулярного и надмолекулярного строения ПЭВД приводят к ухудшению его физико-механических и диэлектрических свойств. Постепенно теряется эластичность, падают относительное удлинение и прочность при разрыве, появляется и усиливается хрупкость, растут диэлектрические потери, уменьшается электрическое сопротивление, снижается стойкость к действию различных химических соединений. Происходит старение полимера. Для его замедления и ослабления успешно применяются различные стабилизаторы, предназначенные для повышения термостабильности, светостойкости, радиационной стойкости. Изучению процессов старения ПЭВД и его стабилизации посвящено большое число работ [65, 67, 164-167]. [c.165]

    Воздействие физико-химических факторов основано на изменении заряда или свойста поверхности частиц, свойств стабилизаторов системы либо на выводе этих стабилизаторов из системы в результате физических или химических воздействий. Для этого обычно используют окисление, введение химических веществ, взаимодействующих с частицами или стабилизаторами системы, радиационную обработку, воздействие электрического и магнитного полей, электрогидравлического удара [1]. Однако основным процессом очистки сточных вод коагуляцией является введение коагулянтов (гетерокоагуляция). [c.17]


    В главе VII Ядерные свойства и влияние облучения изложены сведения о сечениях поглощения и рассеяния, о ядерных свойствах окислов-замедлителей, о пороговых энергиях реакций, приводящих к образованию новых элементов в окислах, о некоторых характеристиках изотопов, образующихся в окислах при облучении. В разделах главы приведены данные о влиянии облучения на объем окислов, их плотность, параметры решетки, на теплопроводность, на изменение механических, электрических и оптических свойств окислов. Также указаны сведения о запасенной энергии и внутреннем трении, о радиационных эффектах и радиационной стойкости. [c.9]

    Из материалов, имеющихся в патентах, видно, что в последние годы в ряде стран стал проявляться интерес к использованию ионизирующих излучений для полимеризации, сополимеризации, прививки и отверждения эпоксидных соединений. Уже получены патенты на способы радиационного отверждения некоторых композиций, содержащих а-окиси. Вместе с тем весьма ограничены сведения о характере химических превращений эпоксидных соединений под действием ионизирующих излучений. Полностью открытым является вопрос о возможности применения излучений для отверждения чистых эпоксидных соединений, а также их смесей с виниловыми мономерами. Имеющиеся в литературе данные показывают, что электрические, механические и некоторые другие свойства отвержденных эпоксидных смол, широко применяемых в космической и атомной технике, могут заметно изменяться при действии ионизирующих излучений. Однако причины этих изменений остаются еще невыясненными ввиду отсутствия сведений о радиационно-химических превращениях исходных веществ. [c.186]

    Влияние типа отвердителя и режима отверждения на радиационную стойкость эпоксидных смол исследовано в ряде работ [4, 5, 12, 17, 31, 34, 38, 43, 52]. При этом изучали изменения физических, механических, электрических, химических и других свойств эпоксидных смол под воздействием различного вида ионизирующих излучений в зависимости от величины и мощности поглощенной дозы (величины и плотности потока частиц), условий облучения и т. д. [c.28]

    В результате облучения изменяются многие физические свойства полимеров механические, электрические и др. Направленное полезное изменение свойств полимеров в результате облучения лежит в основе технологии радиационного модифицирования материалов. По объему продукции, выпускаемой с использованием ионизирующего излучения, радиационное модифицирование полимеров занимает одно из первых мест. На основе этой технологии базируются следующие радиационно-химические процессы модифицирование полиэтиленовой и поливинилхлоридной изоляции кабелей и проводов, изготовление упрочненных и термоусаживаемых пленок, труб и фасонных изделий, получение пенополиэтилена и вулканизация полиоксановых каучуков. Ионизирующее излучение применяют также в производстве теплостойких полиэтиленовых труб и в шинной промышленности. [c.196]

    Наличие поверхности раздела между фазами или между компонентами системы и скачкообразное изменение физико-химических свойств на границе раздела существенно усложняет картину радиационно-химических процессов приходится рассматривать процессы в каждой фазе отдельно и взаимное влияние фаз в процессах и свойствах. В [382] в системе твердое тело — адсорбированное вещество выделяют пять зон твердое тело (I) монослой (И), слой, размерами соответствующий средней длине диффузии атома или иона с поверхности твердого тела (III) слой, раз лерами соответствующий пробегу электронов Оже (IV) и зону влияния электрического поля адсорбента (V). Для общности к ним следовало бы добавить зону, в которой возможна миграция энергии из твердого тела в адсорбат. В твердом теле также выделяют несколько зон, соответствующих передаче заряда, атомов и возбуждения от адсорбированного вещества. Необходимо учитывать и изменение физико-химических свойств в обоих компонентах при удалении от границы раздела фаз (краевые эффекты). Таким образом, получается весьма сложная картина процессов радиолиза в гетерогенных системах. Современное состояние этого вопроса рассмотрено в [383]. Усиленное развитие физико-химических методов исследования поверхности и поверхностных эффектов позволяет надеяться, что радиолиз гетерогенных систем в ближайшие годы станет существенно более исследованным и понятным. [c.256]

    Полиимиды мало устойчивы к действию УФ-излучения. Материалы становятся хрупкими уже после 6-месячной выдержки на солнце. Полипиромеллитимид диаминодифенилоксида характеризуется высокой радиационной стойкостью [359]. Хотя окраска полиимидных пленок усиливается уже при дозе выше 10 рад, физико-механические и электрические свойства при этом практически не изменяются. При облучении полиимидной пленки улучами дозой 4-10 ° рад в вакууме прочность при растяжении составляет 90 % первоначального значения, а относительное удлинение при разрыве — только 20% от исходной величины, равной 65%. Кислород воздуха ускоряет радиолиз этого полимера [95]. В результате облучения у-лучами на воздухе прочность при растяжении составляет 50, а удлинения — 10 % от исходного значения. В то же время при облучении на воздухе дозой 10 рад термостойкость [244] и электрические свойства изменяются незначительно [367],. Облучение электронами дозой 10 рад не приводит к изменению диэлектрических свойств и эластичности пленок [2]. Полистирол в этих условиях становится совершенно хрупким. Облучение в течение 40 сут в ядерном реакторе тепловыми нейтронами при плот- [c.722]

    Для веществ, представляющих интерес с точки зрения радиационной химии, наиболее важными характеристиками считаются их физические, тепловые, электромагнитные и электрические свойства. Разумеется, при облучении твердых тел в определенной степени меняются и их механические свойства, однако ЭТИ изменения В неорганических и органических кристаллах имеют второстепенное значение. Существегтым механическим эффектом в сложных неорганических кристаллах является общее нарушение сил кристаллического поля, приводящее к изменениям нлотности образца. В случае системы, подвергающейся заметным химическим изменениям под действием радиации, существенным механическим эффектом может оказаться измельчение образца. В некоторых простых солях (таких, например, как может происходить заметное увеличение твердости. Одновременно может увеличиваться предел текучестш (иногда вдвое). [c.307]

    Наибольший интерес представляет использование различных силовых полей и излучений — магнитного, электрического, вибрационного, ультразвукового, радиационных—для изменения свойств разделяющей среды и поверхности разделяемых частиц, а также для создания измерительных приборов и датчиков, позволяющих автоматизировать отдельные аппараты и технологические процессы. Комбинирование силовых полей и воздействий (магнитного, электрического, гравитационного) лежит в основе создания некоторых новых процессов и аппаратов, в частности магнитогидроАинамической и магнитогидростатической сепарации [24, б1, 146, 175, 190]. Достижения химии и биохимии позволяют расширить номенклатуру флотационных реагентов и растворителей для активации процессов гидрометаллургической переработки руд. [c.127]

    Процесс необратимого изменения свойств резин, вызванный воздействием различных немеханических факторов раздельно и в совокупности, называется старением. Процессы старения существенно влияют на долговечность резины. Как правило, на практике старение происходит при одновремнном воздействии нескольких факторов (кислорода и озона воздуха, повышенных температур, света, электрических зарядов и т. д.). Для облегчения исследования процессы старения обычно разделяют в соответствии с воздействующим фактором на озонное, термическое, световое, радиационное, коррозионное и прочие. [c.173]

    Различие температуры крупных и мелких кристаллов усиливается, если кристаллизант участвует в химических реакциях, протекающих в фазах системы или на ее стенках. Неоднородность распределения температур, напряжений и дефектов в объеме фаз приводит к неоднородности распределения энтропии, внутренней энергии и энергии Гиббса [1, с. 256 2], а следовательно, равновесного состава и скорости миграции примеси по объему твердой фазы [3, с. 20 4, с. 220]. Поэтому при анализе соосаждения необходимо учитывать неоднородность распределения любого экстенсивного свойства фаз системы и возможность появления источников этого свойства в объеме фаз, на поверхности кристаллов и на стенках системы. При таком анализе раствор (нар) следует рассматривать как дисперсионную среду, а кристаллы — как дисперсную фазу, частицы которой связаны непрерывной функцией распределения по состояниям. Состояние каждого кристалла полностью определяют его пространственные координаты и импульсы, а также внутренние обобщенные координаты (т. е. масса всех компонентов, содержание электрической, магнитной, радиационной, гравитационной, механической и тепловой энергий и параметры их распределения но объему кристалла). Внутренние обобщенные координаты каждого кристалла зависят от внешних обобщенных его координат, т. е. от концентрации компонентов и энергий среды в непосредственной близости от данного кристалла. Внутренние и внешние обобщенные координаты связаны с обобщенными силами (химическим потенциалом, напряженностью электрического и магнитного поля, мощностью радиационного поля, силой тяготения, механическим напряжением и температурой) уравнениями состояния дочерней и материнской фаз. Изменение внутренних обобщенных координат опреде.ляется законами переноса массы и энергии в объеме кристаллов и условиями массо- и энергообмена материнской и дочерней фаз. Изменение внешних координат определяется уравнением движения суспензии и законами массо-и энергопереноса в ее объеме, отражающими связь между потоками массы или энергии и градиентами обобщенных движущих сил [5]. [c.48]

    Основным материалом из полиолефинов, который используют в кабельной промышленности, является полиэтилен. Однако большинство марок полиэтилена относят к сгораемым. Сейчас остро стоит вопрос о придании огнестойкости полиэтилену и другим поли-олефинам [114], хотя промышленность и выпускает самозатухающий полиэтилен. Снижают горючесть полиэтилена введением в его композиции хлорированного парафина и окиси сурьмы. Электрическая прочность сямозатухаюшего полиэтилена равна 40 кВ/мм при диэлектрической проницаемости, равной 2,5, и тангенсе угла диэлектрических потерь при 10 Гц — 0,001, причем эти значения мало меняются с изменением температуры и частоты колебаний. В связи с тем что физико-механические свойства самозатухаю-щего полиэтилена ниже, чем обычного, а допустимая температура эксплуатации не превышает 70 °С, рекомендуют [115] применять радиационное модифицирование полиэтилена. Из-за образования сшивок в полиэтилене после облучения увеличивается плотность материала, что приводит к повышению термо- и огнестойкости, а также электрической прочности [112, с. 128, 190]. [c.96]

    Факты радиационного отжига естественных дефектов, отжига нагреванием до сравнительно невысокой температуры (не выше 100°) естественных п радиационных дефектов, устранение естественных и радиационных дефектов действием сильного электрического поля вместе с результатами порогового эксперимента и фактом отсутствия кислородных вакансии указывает на то, что эти низкобарьерные дефекты в ВаТсО необходимо связывать с локализацией смещенных атомов кислорода в положениях с достаточно малой энергией активации. Отсутствие при этом изменений параметров решетки ВаТ О является свидетельством того, что влияние таких дефектов на термодинамическое состояние кристалла несущественно, и следовательно, нельзя искать на этой пути объяснение механизма выключения иереполя-ризационных свойств. [c.67]

    Совокупность опытных радиационно-физических данных, включающая наличие больших структурных эффектов, показывает, что мате И -алы типа ВаТ1 0 ( 8 0 )под действием облучения ведут себя, вероятно, как дипольные молекулярные соединения со слоистой структурой, обусловленной неравноценностью химических связей внутри слоев АО и ВО2 и между слоями АО и БО2. Поэтому многие свойства этих материалов, ироявляющиеся при действии внешних факторов (нагревание, электрическое поле, механическое давление и т.д.), так же, как и изменения (модификация) этих свойств при действии излучений, должны ( ть связаны с деформацией в первую очередь более слабых межмолекулярных связей. [c.73]


Смотреть страницы где упоминается термин Радиационное изменение электрических свойств: [c.284]    [c.15]    [c.13]    [c.272]    [c.127]    [c.127]   
Смотреть главы в:

Справочник Физико - химические свойства окислов ( издание 2 ) -> Радиационное изменение электрических свойств




ПОИСК





Смотрите так же термины и статьи:

Изменение свойств

Электрические свойства



© 2025 chem21.info Реклама на сайте