Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрические свойства полупроводников типа

    По электрическим свойствам полимеры подразделяются на диэлектрики, полупроводники и электропроводящие материалы. К диэлектрикам относятся полимеры, молекулы которых не содержат легко диссоциирующих на ионы групп и сопряженных двойных связей вдоль макроцепи. Электрическая проводимость у этих полимеров при комнатной температуре не превышает 10 См/м. Для полимерных полупроводников (7=10 ч-Ч-10 См/м) характерно наличие сопряженных двойных связей или комплексов с переносом заряда. Электропроводящие полимерные материалы обычно являются композициями полимер— проводящий наполнитель. Перенос электричества в полимерных материалах может осуществляться электронами, ионами или моль-ионами. Идентификация типа носителей заряда и механизма их перемещения — весьма существенный вопрос для практических применений полимеров. Поэтому ниже рассматриваются основные представления о моделях переноса электрического заряда электронами и ионами. [c.40]


    По природе связей между атомами твердые тела делят тоже на две группы ионные, к которым относятся полупроводники и изоляторы, и ковалентные, включающие металлы. К ионным твердым телам относят вещества с большой долей ионной связи—типа галогенидов щелочных металлов, а также некоторые тела, у которых ионность невелика и преобладают ковалентные связи. Общим для них является изменение электрических свойств — от свойств, типичных для изоляторов, до свойств, проявляющихся у полупроводников. Такие вещества связывают адсорбат посредством электронной пары либо за счет проявления полярности. К ковалентным твердым телам помимо металлов относят элементарные полупроводники и отдельные полупроводниковые соединения. Объединяет их способность связывать адсорбат за счет свободных связей. [c.180]

    В настоящем сборнике рассмотрены физико-химические свойства (главным образом магнитные и электрические) и их связь с кристаллической структурой и строением электронных оболочек элементов для ряда сложных конденсированных систем (интерметаллические соединения, гидриды переходных металлов, системы окислов редкоземельных металлов). Рассмотрены также магнитные свойства соединений урана, структура и свойства полупроводников типа —В и катализаторов. Приведены методы определения и расчета термодинамических функций для сплавов металлов и расплавов солей и метод математической обработки структурных исследований с помощью вычислительных машин. [c.279]

    Серое олово не нашло практического применения. Но его исследования имели большое научное значение, так как впервые продемонстрировали связь электрических свойств полупроводников с их химической природой — положением в периодической системе, кристаллической структурой и типом связи. Впервые оказалось возможным делать прогнозы в отношении электрических свойств еще неизученных веществ. Это, несомненно, имело большое значение для дальнейшего развития как химии, так и физики полупроводников. [c.80]

    До сравнительно недавнего времени носитель рассматривали как инертную составляющую катализатора. Обычно как доказательство инертности носителей приводится отсутствие у них каталитической активности. Однако, как указывалось несколько выше, и у других типов сложных катализаторов один из компонентов может не обладать каталитической активностью. Шваб [87] показал, что при варьировании носителей для одного и того же активного компонента изменяется не только удельная каталитическая активность последнего, но и электрические свойства получаемого катализатора (электропроводность). Следовательно, влияние носителя может иметь электронную природу, что должно также вытекать из теории явлений в пограничных слоях металлов и полупроводников. [c.46]


    ПОЛУПРОВОДНИКИ — вещества с электронной проводимостью, величина электропроводности которых лежит между электропроводностью металлов и изоляторов. Характерной особенностью П. является положительный температурный коэффициент электропроводности (в отличие от металлов). Электропроводность П. зависит от температуры, количества и природы примесей, влияния электрического поля, света и других внешних факторов. К П. относятся простые вещества — бор, углерод (алмаз), кремний, германий, олово (серое), селен, теллур, а также соединения — карбид кремния, соединения типа filmen (инднй — сурьма, индий — мышьяк, галлий — сурьма, алюминий — сурьма), соединения двух или трех элементов, в состав которых входит хотя бы один элемент IV—VII групп периодической системы элементов Д. И. Менделеева, некоторые органические вещества — полицены, азоаромати-ческие соединения, фталоцианин, некоторые свободные радикалы и др. К чистоте полупроводниковых материалов предъявляют повышенные требования, например, в германии контролируют примеси 40 элементов, в кремнии — 27 элементов и т. д. Тем не менее некоторые примеси придают П. определенные свойства и тип проводимости, а потому и являются необходимыми. Содержание примесей не должно превышать 10 —Ш %. П. применяются в приборах в виде монокристаллов с точно определенным содержанием примесей. Применение П. в различных отраслях техники, в радиотехнике, автоматике необычайно возросло в связи с большими преимуществами полупроводниковых приборов — они экономичны, надежны, имеют высокий КПД, малые размеры и др. [c.200]

    Электрические свойства большинства полупроводящих веществ объясняются тем, что число электронов в кристаллической решетке не равно числу дырок. Такое состояние достигается введением примесей легированием). Примесь, атомы которой в кристаллической решетке основного вещества отдают электроны, называется донорной. У полупроводников с донор-ными примесями пЗ>р, и они относятся к полупроводникам п-типа, т. е. с электронной проводимостью. Примесь, атомы которой захватывают электроны от атомов основного вещества, называется акцепторной. У полупроводников с акцепторными примесями р п, и они являются полупроводниками р-типа с дырочной проводимостью. Характер проводимости, достигаемый легированием, можно предсказать сравнением обычных валентных состояний атомов примеси и основного вещества. Если валентность атомов примеси выше валентности основного вещества, то атомы примеси отдают электроны, л>р и примесь донор-ная. Если же валентность атомов примеси ниже, то ее атомы захватывают электроны, р >п и примесь акцепторная. Легирование всегда повышает проводимость полупроводника. [c.186]

    Рассмотрим влияние химически адсорбированного кислорода и паров воды на полупроводниковые свойства германия. Окисленная поверхность германия, содержащая оксид и гидроксид, проницаема для водных паров. На поверхности раздела между германием и оксидным слоем молекулы воды отдают электроны германию и образуют Н+-ИОНЫ, а гидроксильные группы связываются с поверхностными атомами германия. Процесс образования Н+-ИОНОВ резко возрастает при большой концентрации дырок вблизи поверхности. При этом энергетические уровни непосредственно под поверхностью полупроводника настолько искажаются, что, например, приповерхностные участки базовой области германиевого триода от эмиттера до коллектора могут превращаться в материал л-типа и базовый слой окажется зашунтированным. Очевидно, окончательные этапы изготовления прибора должны проходить в сухом воздухе и р—/г-переходы должны быть герметизированы. В оксидном слое у поверхности раздела с полупроводником Н+-ионы способны перемещаться. В определенных условиях Н+-ионы захватывают электроны из объема германия, уменьшая тем самым число свободных электронов. При этом изменяются объемный заряд в полупроводнике, проводимость и другие электрические свойства. Подобные процессы происходят и на кристаллах кремния. [c.311]

    В табл. 33 приводятся некоторые физико-химические и электрические свойства полупроводников типа А2В3 с дефектной тетраэдрической структурой (для наиболее изученных модификаций). [c.149]

    Основное влияние на электрические свойства переходных форм углерода оказывает термическая обработка. Изменяя ее режим, можно из одного и того же углеродистого вещества получить образцы с преимущественно электронной или дырочной проводимостью 1, 2]. Но в то же время независимо от температуры обработки образцы обычно имеют отрицательный температурный коэффициент сопротивления. Сочетание отрицательного температурного коэффициента сопротивления с возможностью изменения типа проводимости позволяет рассматривать переходные формы углерода как качественно своеобразный вид полупроводниковых материалов. Отсюда возникает необходимость в более глубоком исследовании свойств и состояния носителей тока в этих полупроводниках. Большое значение с этой точки зрения имеет изучение температурных зависимостей таких величин, как электропровод ность и коэффициент термоэдс  [c.54]


    Первичным актом гетерогенного катализа, как известно, является слабая или прочная адсорбция по меньщей мере одного из реагирующих веществ [1, 2]. С точки зрения электронной теории катализа, химическая адсорбция осуществляется путем взаимодействия электронов сорбента и сорбата. Если при этом изменяется электронное состояние катализатора, то тем самым обнаруживается связь между каталитическими и электрическими свойствами последнего. Такая связь обнаружена в ряде исследований. Р. Зурман и Г. Цеш [3] нашли соотнощение между изменением работы выхода на металлах при адсорбции атомов водорода и каталитической активностью металлов в отношении реакции рекомбинации этих атомов. Вагнер (4] рассмотрел обмен электронами между реагентами и катализатором при изучении электропроводности и предложил схему разложения закиси азота на окисных катализаторах. Исходя из того, что селективность катализатора определяется положением уровня Ферми, К. Хауффе [5] рассмотрел механизм ряда реакций на поверхности полупроводников. Связь между типом проводи- [c.81]

    Вышеописанный метод можно успешно применять в случае значительного отклонения от стехиометрии. Однако во многих соединениях отклонения от стехиометрии настолько малы, что их даже невозможно обнаружить химическим анализом, и способность вещества вести себя как полупроводник часто является единствен-ньш признаком нестехиометричности. В это.м случае определение типа неупорядоченности представляет гораздо более трудную задачу. Хотя на основании полупроводниковых свойств нельзя судить о природе нестехиометричности, все же во многих случаях тщательное изучение электрических свойств и теоретическое рассмотрение вопроса позволяют сделать заключение о наиболее вероятном типе неупорядоченности. Например, измерения эффекта Холла или термоэлектродвижущей силы (детально рассмотренные в гл. 5) дают возможность установить, являются ли носители тока электронами или положительными дырками. Можно также опреде лить тип проводимости на основании данных об изменении проводимости в зависимости от давления паров более летучего компонента [c.71]

    Особенностью электрических свойств твердых органических веществ является то, что в большинстве случаев их проводимость мала эти вещества относятся обычно к классу изоляторов или полупроводников. Исключение представляют вещества, у которых химическая ненасыщенность распространяется вдоль кристалла таким образом, что движение электронов происходит как бы внутри одной гигантской молекулы. Такого типа металлические свойства имеет графит по двум направлениям, хотя в третьем направлении он представляет собой молекулярный кристалл, являясь предельным членом в ряду ароматических углеводородов с постепенно возрастающим числом гексагональных колец. Электропроводность в направлении, параллельном молекулярным плоскостям, в этом случае в 100 раз больше, чем в перпендикулярном направлении. При проведении опытов на чистых монокристаллах при низких температурах удалось установить, что это соотношение увеличивается еще во много раз. Оптическая прозрачность монокристаллов, скажем, при 4°К для света, возможно даже в видимой части спектра, поляризованного в плоскости, перпендикулярной молекулярным плоскостям, также должна быть относительно большой, если в основном и возбужденном состояниях электроны совершают движение по я-орбитам. Такого типа переходы между основным и возбужденным состояниями еще не удалось наблюдать, так как обычно они замаскированы другими переходами разных типов. [c.660]

    Выше мы касались лишь опытов, в которых исследовались изменения каталитических свойств полупроводников в результате введения в них примесей, создающих дефекты известного типа. Существует целый ряд опытов, цель которых была иная — исследование электрических [c.148]

    Такое перемещение электронов, следуя Шокли, можно уподобить движению автомашин в гараже. На этаже, полностью заполненном машинами, они не могут двигаться. В наполовину заполненном этаже число машин, способных двигаться в заданном направлении, максимально. Наличие одной или двух машин на этаже или, наоборот, наличие лишь нескольких свободных мест не может привести к сколь-ко-нибудь значительному потоку автомобилей в заданном направлении. Полупроводники с небольшим числом электронов в зоне относят к п-типу, а полупроводники с небольшим числом вакансии в зоне (их называют дырками) —кр-типу, позднее мы обсудим это подробнее. Незначительное различие в электронной структуре полупроводников и диэлектриков приводит, однако, к значительному-различию в их электрических свойствах. [c.44]

    Напротив, при неизменности (среднего) значения координационного числа полупроводниковые свойства сохраняются у материала и в расплавленном состоянии. Таким образом, оказалось, что при переходе из твердого в жидкое (аморфное) состояние сохраняется не только характер теплового движения и целый ряд механических свойств тела (Я. И. Френкель), но и в некоторой степени остаются неизменными его электрические характеристики, определяемые типом энергетического спектра. Справедливость изложенной концепции Иоффе о том, что энергетический спектр определяется ближним порядком, была подтверждена работами Б. Т. Коломийца по стеклообразным полупроводникам. [c.20]

    Примесные полупроводниковые кристаллы. Германий и кремний, элементы IV основной группы Периодической системы, обладают в чистом виде низкой проводимостью. Однако они приобретают свойства полупроводников, если к ним добавить элементы III и V основных групп с приблизительно одинаковым атомным радиусом, так как в этом случае примесный центр становится электрически активным. Благодаря внедрению элементов этих групп, к примеру Р, Аз, 5Ь (V группа), в германии образуются дефекты, вызывающие появление избытка электронов. При таком замещении получаются дефекты донорного типа, так как избыточный пятый валентный электрон сурьмы связан только слегка и вблизи примесного центра образует протяженное облако отрицательного заряда, которое охватывает область приблизительно в 1000 атомов германия (рис. 10.6). Так как свободные электроны являются носителями зарядов, то речь идет о полупроводнике типа п. [c.214]

    Заметим еще, что 45% всех ато.мов 5Ь в ЗЬдТед и 25% в В зТсз могут быть замещены атома.ми 1п без существенного изменения электрических свойств (соединения типа В12Тед являются полупроводниками). Это, вероятно, показывает, что в таком случае 55-орбитали атома 1п не участвуют в связи и остаются пусты.ми [ 10]. [c.189]

    Экспериментальные исследования влияния дислокаций на электрические свойства полупроводников связаны с определенными трудностями. При пластическом деформировании монокристаллов ковалентных полупроводников в температурном интервале пластичности наряду с дислокациями образуются точечные дефекты, перераспределяются примеси и изменяется их состояние. Вклад этих эффектов в некоторых случаях превосходит изменения, связанные с дислокациями [44—46], и может даже привести к инверсии типа проводимости образца [44, 45]. Все это вместе со сложностью создания кристаллов с заданной дислокационной структурой обусловило большую противоречивость экснерийшнтальных данных о положении дислокационных уровней, полученных при исследованиях эффекта Холла, фотопроводимости, рекомбинационного излучения [26, 40, 41]. [c.247]

    Для электро- и радиопромышленности необходимы материалы, обладающие дефектами заданного свойства и заданных концентраций. Электрическая проводимость полупроводников, фотоэлектрические, термоэлектрические и другие свойств.5 сильно зависят от типа и разупо-рядоченности решетки. Возможность сознательного управления свойствами этих веществ, многие из которых играют важную роль в технике, фактически определяется знаниями природы содержащихся в них дефектов и умением изменять их концентрации. [c.183]

    Среди материалов, обладающих электрическими свойствами, обычно рассматр йвают проводники, полупроводники и диэлектрики. Различия между ними определяются характером химической связи и структурой энергетических зон, возникающих в результате взаимодействия атомов или ионов, составляющих кристаллическую решетку. Энергетическая диаграмма полупроводникового кристалла в отличие от диэлектрика характеризуется более узкой полосой запрещенных энергий. Некоторые важнейшие полупроводниковые материалы для электронной техники уже были рассмотрены (германий, кремний, арсенид галлия). В то же время существует много перспективных соединений типа А В (А —Оа, 1п В -8Ь, Аз, Р) и А В1 (А11-2п, Сс1, Hg В -5, 8е, Те). Первые из них обладают исключительно высокой подвижностью носителей заряда, а вторые позволяют в широком интервале изменять ширину запрещенной зоны. Среди диэлектриков со специальными свойствами в первую очередь следует выделить сегнето- и пьезоэлектрические материалы для квантовой электроники, включая активные среды лазеров и мазеров. Первые из них склонны к поляризации только пол влиянием внешних механических воз- [c.164]

    У некоторых полупроводников эффективная масса дырок очень велика ио сравнению с эффективной массой электронов проводимости, и поэтому основной вклад в электрические свойства дают электроны проводимости. Такие полупроводники называются электронными полупроводниками или полупроводниками п-типа (от слова negativ — негативный, т. е. отрицательный). В противоположном случае (большая эффективная масса электронов проводимости) основной вклад дают дырки. Такие полупроводники называются дырочными полупроводниками или полупроводниками р-типа (positiv — позитивный, т. е. положительный). [c.216]

    Известно, что количество и природа примесей в решетке полупроводника оказывает сильное влияние на его электрические свойства. Так, например, замещение некоторого числа катионов в узлах решетки полупроводника р-типа катионами с меньшим зарядом увеличивает электропроводность кристаллов, но затрудняет диффузию протонных дефектов. Для полупроводников га-тнпа имеет место обратное соотношение. По-видимому, с этими явлениями связано действие, оказываемое добавками соединений лития на характеристики щелочных аккумуляторов. Хотя при современном состоянии теории полупроводников нельзя в полной мере объяснить и предсказать характер влияния примесей на работу окисноникелевого электрода, но дальнейшее накопление экспериментальных данных и их обобщение несомненно представляют большой интерес. [c.83]

    Совокупность перечисленных особенностей веществ дангюй группы связана с ковалентным типом взаимодействия между атомами соединений, кристаллизующихся в структуре, образующей непрерывную трехмерную решетку. Электрические свойства большей части веществ этой группы также свидетельствуют о наличии выраженной ковалентной связи в изодесмической структуре. Вещества этой груины являются полупроводниками. Некоторые электрические параметры веществ типа А и AII1BV могут быть вычислены с позиций атомной решетки . Механизм образования дырочной и электронной проводимости в веществах этого типа может быть объяснен с точки зрения схемы парно-электронных тетраэдрических ковалентных связей [8.  [c.97]

    Полупроводники. Твердые тела, которые по величине электрического сопротивления при комнатной температуре расположены между проводниками и изоляторами. При тепловом возбуждении полупроводников выше определенной температуры концентрация носителей электрического заряда увеличивается с повышением температуры. Чистые полупроводники, которые не содержат примесей, называются собственными полупроводниками полупроводники, электрические свойства которых зависят от примесей, называются несобственными. Несобственные полупроводники, имеюш,ие избыток носителей с отрицательными зарядами (электроны), называются иолуприводника.ми /мина иолуироводники, имеюш,ие избыток носителей положительного заряда (дырки), называются полупроводниками р-типа. [c.95]

    В последнее время стали применять в качестве полупроводников также и химические соединения, в первую очередь между элементами третьей ж пятой групп (полупроводники типа В ). Особенно ценными свойствами обладают сурьмянистый индии 1п8Ь, чувствительный к инфракрасному свету с очень большой длиной волны и ьшшьяковистый галлий ОаАз, в котором рекомбинация электронов и дырок дает интенсивное световое излучение (квантовый генератор света или полупроводниковый лазер, превращающий энергию электрического тока непосредственно в световую). Полупроводниковыми свойствами обладают и многие окислы. Так, окись цинка является электронным полупроводником роль доноров играют при этом избыточные атомы или однозарядные ионы цинка. Окись меди(1) является дырочным полупроводником роль акцепторов играют избыточные атомы кислорода. Однако подвижность носителей тока (электронов или дырок) в окисных полупроводниках низка, так что для радиотехники они менее ценны. Для выпрямления сильных токов используют тонкий слой окиси меди(1), нанесенный окислительным процессом на поверхность металлической меди (купроксный выпрямитель). Это — простейший аналог полупроводникового диода, в котором, однако, роль электронного проводника играет обычный металл. Свойства окисных полупроводников сильно зависят от состояния их поверхности. Так, электропроводность окиси цинка понижается в атмосфере кислорода, который адсорбируется поверхностью и захватывает свободные электроны. Способность окислов ускорять (катализировать) газовые реакции связана с полупроводниковыми свойствами, т. е. с наличием свободных электронов.— Доп. ред. [c.457]

    В настояшее время зависимость электрических свойств материалов от типа проводимости изучена хорошо. Показано, что небольшие примееи приводят к совершенно противоположным изменениям электропроводности у полупроводников с различными типами проводимости. Не исключено, что характер дефектности кристаллической решетки ферритов оказывает значительное влияние на магнитные характеристики. [c.79]


Смотреть страницы где упоминается термин Электрические свойства полупроводников типа: [c.518]    [c.301]    [c.274]    [c.256]    [c.318]    [c.237]    [c.280]    [c.92]    [c.237]    [c.53]    [c.178]    [c.23]    [c.236]    [c.457]    [c.835]    [c.31]    [c.89]    [c.16]   
Смотреть главы в:

Физико-химия твердого тела -> Электрические свойства полупроводников типа




ПОИСК





Смотрите так же термины и статьи:

Полупроводники

Полупроводники полупроводники

Электрические свойства

Электрических сил типы



© 2025 chem21.info Реклама на сайте