Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полупроводники элементарные

    Электрические и оптические свойства. Наиболее важной нз электрических характеристик элементарных веществ является электрическая проводимость, с которой, собственно, в значительной мере связана классификация элементарных веществ. Так, элементарные металлы являются проводниками электричества первого рода, металлоиды—полупроводниками, элементарные окислители — диэлектриками, благородные газы — скользящими проводниками электричества. [c.115]


    Фундаментом прогнозирования активности, селективности и других специфических свойств катализатора должна стать детальная микроскопическая теория гетерогенного катализа, опирающаяся на современные представления квантовой химии и теории твердого тела. Описывая элементарные акты реакций и превращений вещества на поверхности реального катализатора, такая теория в принципе дает возможность не только в полной мере понять механизм, кинетику и термодинамику катализа, но и предсказать каталитическую способность того или иного металла, полупроводника, диэлектрика в конкретной химической реакции. Однако незавершенность теорий катализа не позволяет однозначно предсказывать оптимальный состав промышленных катализаторов и другие их характеристики для действующих и проектируемых производств. До сих пор решение проблемы подбора катализаторов опирается в значительной мере на эмпирические подходы, сопряженные с большими затратами рутинных форм труда. Так, в поисках первого катализатора для синтеза аммиака было исследовано около 20 тыс. различных веществ [1, 2]. В 1973 г. число известных органических соединений оценивалось в 6 млн. Ежегодно только в нашей стране синтезируется более 40 тыс. новых химических соединений. Таким образом, разработка научно обоснованных целенаправленных стратегий поиска катализаторов представляет актуальную проблему современного катализа. Актуальность проблемы подтверждается еще и тем, что коло 90% промышленных химических и нефтехимических производств ведется с применением катализаторов. [c.56]

    По природе связей между атомами твердые тела делят тоже на две группы ионные, к которым относятся полупроводники и изоляторы, и ковалентные, включающие металлы. К ионным твердым телам относят вещества с большой долей ионной связи—типа галогенидов щелочных металлов, а также некоторые тела, у которых ионность невелика и преобладают ковалентные связи. Общим для них является изменение электрических свойств — от свойств, типичных для изоляторов, до свойств, проявляющихся у полупроводников. Такие вещества связывают адсорбат посредством электронной пары либо за счет проявления полярности. К ковалентным твердым телам помимо металлов относят элементарные полупроводники и отдельные полупроводниковые соединения. Объединяет их способность связывать адсорбат за счет свободных связей. [c.180]


    Полупроводниковые материалы условно подразделяют на химические элементы (элементарные полупроводники) и химические соединения (сложные полупроводники). В настоящее время известны кристаллические модификации 13 химических элементов, обладающие полупроводниковыми свойствами. Все они находятся в главных подгруппах IИ—VU групп периодической системы элементов Менделеева  [c.311]

    Широкое применение полупроводников привело к созданию новых сложных полупроводниковых систем на основе химических соединений. Поиск таких соединений базировался, в первую очередь, на аналогии их структуры со структурой элементарных полупроводников. Так, согласно правилу октета следует ожидать, что полупроводниковыми свойствами будут обладать не только простые вещества типа AIV Д1У но и сложные соединения типа В", А В , А >В и А В , в кристаллической решетке которых на каждый атом приходится такое же количество электронов, как и в кристаллах простых веществ элементов IV группы. Действительно, полупроводниковыми свойствами обладают кристаллы следующих соединений, которые имеют тетраэдрическую структуру  [c.313]

    Главное значение для техники имеют полупроводники простые вещества ( элементарные полупроводники). Среди них на первом месте стоят кремний и германий. Используются также селен и олово (серое). [c.458]

    Рассмотрим ионный кристалл полупроводника МР, состоящий из однозарядных катионов М+ и анионов Р . Электропроводность такого кристалла связана с тем, что часть электронов, обладающая повышенной энергией, делокализуется и может свободно перемещаться по кристаллу. В свете элементарных химических представлений это значит, что электрон переходит от аниона к катиону с образованием в двух соседних узлах кристаллической решетки двух нейтральных атомов  [c.453]

    Способность преломлять свет, количественно выражаемая величиной показателя преломления, у различных элементарных веществ различна у элементарных окислителей, являющихся диэлектриками, и у благородных газов она невелика. У элементарных металлоидов, являющихся полупроводниками, она значительно повышается, а у элементарных металлов, по-существу, становится бесконечно большой. Металлы непрозрачны их гладкая поверхность отражает падающие на нее световые лучи (мелко раздробленный металл их поглощает), поэтому они обладают характерным металлическим блеском, интенсивность которого зависит от доли поглощаемого металлом света чем она меньше, тем ярче блеск. [c.45]

    Интерметаллические соединения представляют собой металлоподобные по внешнему виду и по физическим свойствам вещества. Однако типичные для металлов свойства у интерметаллидов проявляются слабее обычно величина их электропроводности меньше, чем у наименее электропроводного компонента, а интерметаллические соединения металлов И1А и IVA групп даже являются полупроводниками. Блеск интерметаллидов, их пластичность и теплопроводность слабее блеска, пластичности и теплопроводности соответствующих элементарных металлов. [c.31]

    Применение в энергетике. Селен — один из первых элементарных полупроводников, широко применяемых для изготовления селеновых выпрямителей, фотосопротивлений и других приборов и деталей полупроводниковой техники. Теллур тоже относится к элементарным полупроводникам, но применяется реже, чем селен. Многие селениды и теллуриды обладают полупроводниковыми свойствами. [c.234]

    В этой главе рассматриваются элементы трех групп периодической системы IПА-группы бора, IVA-группы углерода и группы VA — сурьма и висмут. Атомы их характеризуются застройкой электронами р-подуровня наружного уровня. У этих элементов, за исключением алюминия, восстановительная способность выражена сравнительно слабо. В свободном состоянии они характеризуются свойствами, отличающимися от свойств типичных металлов. Некоторые из соответствующих элементарных веществ (кремний, германий) являются полупроводниками, иные (бор, алмаз) отличаются большой твердостью. Значение в современной технике как элементарных веществ, так и некоторых соединений этих элементов очень велико. [c.170]

    Рассмотрим явление полупроводимости для простейшего случая элементарных собственных полупроводников, которыми являются первые четыре р-элемента IVA-группы углерод (алмаз), кремний, германий и серое олово, кристаллизующееся по типу алмаза (табл. 13.12). [c.427]

    Первые два элемента — типичные неметаллы. У германия появляются некоторые черты металличности. Свинец — типичный металл. От углерода к свинцу ослабляются окислительные и усиливаются восстановительные свойства атомов. У соединений четырехвалентных элементов по тому же ряду усиливаются окислительные свойства, а у соединений двухвалентных элементов ослабляются восстановительные свойства. Углерод в виде алмаза — диэлектрик. Кремний, германий и а-олово — типичные полупроводники, имеющие алмазный тип кристаллической решетки (см. рис. 45). У металлического р-олова тетрагональная элементарная ячейка. У свинца ячейка типа К-12. [c.286]


    Полупроводниковыми свойствами помимо элементарных веществ отличаются также некоторые простые соединения, а именно оксиды, сульфиды, селениды, фосфиды, аренды и т. п. соединения некоторых металлов. В этом случае на характер полупроводимости влияет отступление от стехиометрических соотношений в составе соединения. Так, например, избыток металла придает соединению электронную проводимость, а, наоборот, недостаток металла — дырочную проводимость. Так, регулируя состав соединения, можно получить полупроводники п-типа (с преобладанием электронной проводимости) и р-типа (с преобладанием дырочной проводимости). [c.206]

    Особенности и границы применимости метода. Метод выращивания монокристаллов элементарных и сложных полупроводников из расплава, состав которого близок к составу получаемого кристалла, об- [c.84]

    Как следует из данных табл. 13.7, р-элементы IVA-группы можно разделить на неметаллы С, Si, Ge и металлы Sn и РЬ. Химические свойства углерода см. гл. 15. Кремний и германий — классические элементарные полупроводники, их свойства см. 13.4. Однако, поскольку кремний широко применяется в металлургии черных и цветных металлов, а также в строительстве в виде кисло- [c.411]

    В табл. 13.13 приведены основные свойства элементарных полупроводников. [c.431]

    Состав, а следовательно, и свойства полупроводников чрезвычайно сильно зависят от технологии их получения и очистки. Для устойчивых соединений можно применять методы получения и очистки, аналогичные уже рассмотренным для элементарных полупроводников. Кроме того, применяется метод осаждения из газовой фазы путем реакций в потоке инертного газа (Аг, Не) или в вакууме. В последнее время начинают применять синтез таких полупроводников из металлорганических соединений. [c.436]

    Алмазный тип решетки имеют важнейшие элементарные полупроводники кремний, германий, а также и а-олово. [c.124]

    Положение элементарных полупроводников в периодической системе. [c.253]

    В соответствии с этим интересно отметить, что на поверхности катализатора находится 9,1% (расчет по размерам элементарной ячейки) или 11,5% (расчет по молекулярному объему WSa) молекул WSa, что указывает на возможность обмена с Sa всех атомов серы поверхности. Предпринятое параллельно изучение полупроводнико- [c.270]

    Использование бора и боридок в технике. Элементарный бор применяется в различных отраслях техники. D электронике он используется прн высоких температурах как полупроводник, а при низких — как электронный нроводник. В ядерной технике используется способность изотопа В поглощать тепловые нейтроны. При захвате бором нейтронов происходит ядерняя реакция °В(п, a) Li, которую используют для регистрации нейтронов в специальных приборах — борных счетчиках и борных камерах эти приборы наполнены газообразным фторидо и бора ь ли покрыты с внутренней стороны карбидом бора. [c.349]

    Элементарные кремний и германий представляют собой полупроводниковые материалы, которые в настоящее время очень широко применяются для производства транзисторов, термистеров, фотоэлементов и других деталей радиоэлектроники, радио- и электротехники. Электропроводность кристаллических германия и кремния (и других полупроводников) в значительной степени обусловлена ничтожными примесями атомов других элементов, замещающих атомы германия и кремния в их кристаллических решетках. Появление некоторого числа свободных слабосвязанных электронов или электронных вакансий, так называемых дырок, придает кристаллам полупроводниковых материалов свойство избирательной проводимости отрицательной — электронной — или положительной — дырочной. Электропроводность полупроводников определяется не только природой и концентрацией примесных элементов (которая, вообще говоря, обычно бывает очень мала атома примеси на 10 —10 атомов основного элемента), но и физическими [c.104]

    Электронная структура полимеров определяется характером существующей химической связи между атомами элементарного звена и между отдельными участками макромолекулы. Например, в молекуле белка кератине, являющегося основой строения натурального волокна — шерсти, существуют ковалентные полярные связи с высокой долей делокализации электронной плотности между атомами пептидной группировки -НЯС-СО-КН-, составляющей скелет макромолекулы. Кроме этого, внутри макромолекулы и между макромолекулами существуют другие виды химической связи, также определяющие пространственную конфигурацию (конформацию) макромолекулы водородные связи, вандерваальсовы и другие виды взаимодействий. Но электронн-ная структрура полимеров не всегда может быть представлена как сумма электронных структур отдельных его участков. Вследствие большого числа атомов, участвующих во взаимодействии, для полимеров, так же, как и для твердых тел, но при гораздо большем числе влияющих факторов, могут быть рассчитаны валентная зона и зона проводимости. По величине расщепления — разности энергий между ближайшими границами этих зон, могут быть выделены полимеры — изоляторы, полимеры — полупроводники и полимеры — проводники электрического тока. Для полимеров с бесконечными цепями атомов, обеспечивающих делокализацию электронов по всей макромолекуле, предсказывают и сверхпроводящие свойства. [c.613]

    КВАНТОВАЯ МЕХАНИКА - физическая теория, изучающая общие закономерности движения и взаимодействия микрочастиц (элементарных частиц, атомных ядер, атомов и молекул) теоретическая основа современной физики и химии. К. м. возникла в связи с необходимостью преодолеть противоречивость и недостаточность теории Бора относительно строения атома. Важнейшую роль в разработке К. м. сыграли исследования М. Планка, А. Эйнштейна, Н. Бора, М. Борна и др. К. м. была создана в 1924—26 гг., благодаря трудам Л. де Бройля, Э. Шредингера, В. Гейзенберга и П. Дирака. К. м. является основой теории многих атомных к молекулярных процессоБ. Она имеет огромное значение для раскрытия строения материи и объяснения ее свойств. На основе К. м были объяснены строение и свойства ато MOB, атомные спектры, рассеяние света создана теория строения молекул и рас крыта природа химической связи, раз работаиа теория молекулярных спектров, теория твердого тела, объясняющая его электрические, магнитные и оптические свойства с помощью К. м. удалось понять природу металлического состояния, полупроводников, ферромагнетизма и множества других явлений, связанных с природой движения и взаимодействием микрочастиц материи, не объясняемых классической механикой, [c.124]

    ЭЛЕКТРОН (е) — устойчивая элементарная частица с отрицательным электрическим зарядом, принятым за единицу количества электричества, и массой, равной 9 г. Э. был открыт в 1897 г. Дж. Томсоном. Э. играют основную роль в строении вещества, они являются одной из составных частей атомов. Э,, движущиеся вокруг атомного ядра, определяют химические, электрические, оптические и другие свойства атомов и л олекул. Характер движения Э. обусловливает свойства жидких и твердых тел, их плотность, электропроводность метяллов и полупроводников, свойства диэлектриков, оптические и другие свойства кристаллов и т. д. Важную роль играют ва- [c.290]

    Если учесть, что разница между полупроводниками и диэлектриками только количественная, то можно сказать, что наличие только металлической связи между атомами исключает полупроводниковые свойства вещества (из этого не надо делать вывода о том,что в обычных условиях металлическая составляющая связи в полупроводниках полностью отсутствует). Для полупроводников типичны ковалентные и ионно-ковалентные связи. Музер и Пирсон отмечают, что в составе всех известных неорганических полупроводников всегда есть неметаллические атомы какого-либо из элементов IVA — VIIА подгрупп. Зонная теория не объясняет этого факта. Собственно полупроводниками являются элементарные вещества этих групп (углерод, кремний, германий, а-олово, некоторые модификации 4юсфора, мышьяка, сурьмы, селен, теллур). Сюда надо отнести и бор. Некоторые черты полупроводниковых свойств имеют сера и иод. Слева и снизу от этих элементов в системе находятся металлы, а выше и правее — типичные диэлектрики. [c.255]

    Арсенид галлия GaAs и антимонид индия InSb получают сплавлением элементарных веществ. Это полупроводники, имеющие важное практическое значение. [c.277]

    Некоторые элементарные металлоиды отличаются полупроводниковыми свойствами. Эти свойства обусловлены особым состоянием электронов в кристаллической решетке полупроводников. Каждый атом металлоида в кристалле связан с другими атомами ковалентной связью. В кристаллах полупроводников валентные электроны закреплены в атомах непрочно и под влиянием нагревания или облучения могут, возбуждаясь, отрываться от связываемых ими атомов и свободными уходить в междуузлия решетки. Наличие свободных электронов в кристаллах металлоидов сообщает им некоторую электронную проводимость. При переходе электрона в свободное состояние у данного атома остается свободная орбиталь или так называемая д ы р к а . Эта дырка может заполниться при перескоке валентного электрона соседнего атома, в котором тогда возникает новая дырка. Если при наложении электрического поля свободные электроны будут передвигаться к положительному полюсу, то дырки будут передвигаться к отрицательному полюсу. Это передвижение дырок, равносильное передвижению положительных зарядов, сообщает кристаллам металлоидов еще так называемую дырочную проводимость. В совершенно чистом полупроводнике в каждый данный момент число дырок равно числу свободных электронов. Однако вследствие того, что подвижности электронов и дырок различны, значения электронной (п) и дырочной (р) проводимости в общей электропроводности чистого металлоида (значение которой очень невелико) не равны друг другу. Соотношение между числами свободных электронов и дырок в кристалле металлоида можно изменить, если в металлоид ввести даже очень незначительную примесь другого металлоида или, наоборот, металла. Пол у проводимость отличается от обычной металлической электропроводности не только своей малой величиной. Она увеличивается с повышением температуры и сильно зависит от освещения полупроводника. Наиболее же существенным признаком полупрово-димости является крайняя чувствительность к наличию примесей даже в самых ничтожных количествах. [c.44]

    Структура элементарных полупроводников подчиняется так называемому правилу октета , согласно которому каждый атом имеет (8 — №) ближащих соседей, где № — номер группы периодической системы, в которой находится данный химический элемент. Например, координационные числа в полупроводниковых модификациях углерода, кремния, германия, олова равны четырем (8 —IV), в кристаллах фосфора, мышьяка, сурьмы — трем (8—V), а в полупроводниковых сере, селене, теллуре — двум (8 — VI). [c.311]

    По химическому составу полупроводники весьма разнообразны. К ним относятся элементарные вещества, как, например, бор, графит, кремний, германий, мышьяк, сурьма, селен, а также многие оксиды ( uaO, ZnO), сульфиды (PbS), соединения с индием (InSb) и т. д. и многие соединения, состоящие более чем из двух элементов. Известны и некоторые органические соединения обладающие полупроводниковыми свойствами. Таким образом, к полупроводникам относится очень большое число веществ. Обусловлены полупроводниковые свойства характером химической связи (ковалентным, или ковалентным с некоторой долей ионности), типом кристаллической решетки, размерами атомов, расстоянием между ними, их взаиморасположением. Если химические связи вещества носят преимущественно металлический характер, то его полупроводниковые свойства исключаются. Зависимость полупроводниковых свойств от типа решетки и от характера связи ясно видна на примере аллотропных модификаций углерода. Так, алмаз — типичный диэлектрик, а графит — полупроводник с положительным температурным коэффициентом электропроводности. То же у олова белое олово — металл, а его аллотропное видоизменение серое олово — полупроводник. Известны примеры с модификациями фосфора и серы. [c.298]

    По-видимому, может существовать отличная и от графита, и от алмаза линейная форма элементарного углерода (карбин), слагающаяся из цепных полимеров типа (—С С—С = С—)п (т. н. полиинов) или ( = С = С = С = ) (т. н. кумуленов). Исходя из ацетилена был получен продукт, содержащий до 99,9% углерода и представляющий собой трехфазную систему, в которой кристаллы полиина и кумулена сочетаются с аморфным углеродом. Он черного цвета, имеет плотность около 2,0 г/сл , ни в чем не растворяется, обладает свойствами полупроводника л-типа и переходит в графит лишь выше 2000 С. Интересно, что теплота сгорания карбина — 85,2 ккал/г-атом — гораздо меньше, чем у других форм углерода (доп. 4). Причина этого не ясна. [c.506]

    В полипептидной цепи эта группа, как предполагалось в модели Лаки и Коулсона, отцает четыре электрона для образования общей я-орбитали. Согласно этой модели белок является полупроводником, причем л-электронные орбитали располагаются перпендикулярно оси полипептидной цепи. Позже Эванс и Герей, рассматривая пептидную группу как элементарную ячейку, пришли к выводу о наличии в молекуле белка трех энергетических зон, из которых одна свободна. Более точные расчеты показали, что ширина запрещенной зоны в белках довольно велика и равна 5 эВ. Бриллюэн предложил модель, в которой зоны проводимости белка получаются за счет перекрытия ст-связей. В этой модели ширина запрещенных зон еще больше (8—10 эВ). Проблема полупроводи-мости белковых систем пока ждет решения. Эксперимент показывает, что энергия фотовозбуждения отдельных групп, связанных с белковой цепью, может мигрировать на значительные расстояния и вызывать флуоресценцию других групп. Комплекс миоглобина с оксидом углерода (II) отщепляет СО при действии излучения, которое не поглощается гемином (т. е. группой, непосредственно связанной с СО), но поглощается триптофаном и тирозином — аминокислотами, остатки которых входят в состав белка миоглобина. Здесь энергия мигрирует от белка к геминовой группе. Эти важные свойства белков показывают, что белки в некоторых случаях способны передавать энергию возбуждения, т. е., в общем случае, сигналы . В ходе эволюции функции передачи сигналов в форме серии дискретных импульсов, частота которых зависит от силы раздражения, перешли к более совершенной системе — нейронам нервной сети. [c.348]

    Вещество будет обладать полупроводниковыми свойствами, если в данном состоянии обеспечиваются условия образования насыщенных парноэлектронных связей хотя бы у одного из компонентов (у анионообразователя). В элементарных полупроводниках ковалентная связь образуется заполнением 5- и /з-орбиталей всех атомов. Эти полупроводники подчиняются так называемому правилу октета 8—М, согласно которому атом в ковалентном кристалле имеет 8—N ближайших соседей (уУ — номер группы Периодической системы). Так, кремний, германий и а-олово имеют координационное число 4 (Л = 4), для полупроводниковых модификаций фосфора, [c.318]

    Правило октета позволяет определить размещение элементарных полупроводников и компонентов полупроводниковых соединений в Периодической системе. В самом деле, насыщенные ковалентные связи могут существовать в кристаллах Si, Ge, a-Sn, Р, As, Sb, S, Se, Те, I2, которые расположены компактной группой на границе между типичными металлами и неметаллами. В химическом отношении, следовательно, элементарные полупроводники, как правило, обладают амфотерными свойствами. Наиболее ярко выражены полупроводниковые свойства у элементов IV группы, кристаллизующихся в структуре алмаза с тетраэдрической ориентацией атомов. Полупроводниковые свойства характерны и для бинарных соединений, составные элементы которых равноотстоят от элементов IV группы (AiiiB ",AiiB "i, АШ " ). Сумма номеров групп, в которых находятся компоненты этих соединений, равна восьми, что соответствует общему количеству валентных электронов на формальную единицу. По этому признаку формируются так называемые изо-электронные ряды кремния, германия и серого олова  [c.319]

    На рис. 72 изображены схемы появления дырки в атомной решетке элементарного полупроводника и возникновение электрона проводимости. Электрон, появившийся в междоузлии, является подвижным носителем заряда. Такие электроны, как и дырки, могут свободно пе-ремеш,аться по кристаллу (диффундировать). Если поместить кристалл в электрическое поле с напряжением, падающим справа налево, то свободный электрон приобретает направленное движение против [c.237]

    По Музеру и Пирсону, полупроводимость является результатом наличия в твердом теле преобладающей ковалентной связи. Это ведет к образованию полностью заполненных групп s- и р-орбит в валентных оболочках всех атомов у элементарных полупроводников, тогда как в полупроводниковых соединениях необходимо, чтобы только один и притом любой атом из двух, связанных вместе, обладал заполненными S- и р-орбитами. Присутствие пустых металлических орбит у некоторых атомов, входящих в состав соединения, не уничтожают полупроводимости, если эти атомы не связаны друг с другом 152, стр. 135]. Однако из-за этого обстоятельства могут возникнуть связи дробной кратности (нелокализованные связи), тогда к. ч. атомов превышает их валентность. Например, халькогениды свинца имеют решетки типа Na I с к. ч. 6. [c.255]


Смотреть страницы где упоминается термин Полупроводники элементарные: [c.149]    [c.207]    [c.117]    [c.186]    [c.233]    [c.365]    [c.295]    [c.313]   
Введение в химию полупроводников Издание 2 (1975) -- [ c.91 ]




ПОИСК





Смотрите так же термины и статьи:

Полупроводники

Полупроводники полупроводники



© 2025 chem21.info Реклама на сайте