Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции ароматических соединений со сложными эфирами

    Реакция. Бромирование Р-дикарбонильной системы с последующим элиминированием НВг и образование.м ароматического соединения. Одновременно происходят расщепление сложного эфира и декарбоксилирование образовавшейся карбоновой кислоты (ср. декарбоксилирование салициловой кислоты). [c.325]

    Одной из важных реакций, в которых используются сульфохлориды ароматического ряда (бензол- или толуолсульфо-хлорид), является реакция этерификации, приводящая к получению сложных эфиров ароматических сульфокислот. Эти соединения представляют собой ценные алкилирующие средства. [c.127]


    Используют три основных способа получения фторсодержащих ПАВ. Детально эти процессы описаны в [147]. Один из них заключается в электрохимическом фторировании соответствующих алифатических соединений с требуемой функциональной группой. Он состоит из электрофторирования раствора углеводородного сырья фтористым водородом (реакция Д. Саймонса). Наилучшим образом этот процесс объясняется образованием фторрадикалов. Могут быть использованы лишь соединения, устойчивые в безводном НЕ, такие как алифатические углеводороды, дезактивированные ароматические соединения, простые эфиры, тиоэфиры, сложные эфиры, галоиды кислот, третичные амины и сульфонилгалоиды. Спирты, кетоны и карбоновые кислоты в таких условиях не применяются. [c.66]

    Реакция а-галогензамещенного сложного эфира или а-галогенкетона с кетоном или ароматическим альдегидом в присутствии сильного основания известна как конденсация Дарзана [132]. Образующееся в результате а,р-эпоксикарбонильное соединение получается за счет замыкания цикла в промежуточном продукте альдольной конденсации схема (67) [133]. Стереохимия конечного продукта зависит от относительных скоростей альдольной конденсации и стадии замыкания цикла. Если последняя протекает более медленно, между альдольными интермедиатами устанавливается равновесие, что приводит только к продукту с карбонильной функцией в гране-положении к наибольшему р-заме-стителю см. схему (67) [134], Факторы, замедляющие альдоль- [c.728]

    Здесь следует рассмотреть два основных варианта реакции Фри-деля-Крафтса. Первый вариант — прямое алкилирование бензола (или гомологов) с применением олефинов или неорганических сложных эфиров (алкилгалоидов или сульфатов) и небольших количеств катализатора. Другой вариант заключается в ацилировании с образованием арилал-килкетонов (как промежуточных соединений) и восстановление их в ароматические углеводороды. Ацилирование производится хлорангидридами или ангидридами с добавлением стехиометрических количеств катализатора — галогенида металла, обычно безводного хлористого алюминия  [c.480]

    Существует ряд катализируемых кислотами (или кислотами Льюиса) реакций, в ходе которых М-замещенные ароматические амины и 0-замещенные фенолы перегруппировываются в соответствующие орто- или /гара-замещенные в ядре соединения. Из числа таки Г реакций уже обсуждались перегруппировка диазоаминосое-динений (триазенов) в аминоазосоединения (разд. Г, 8.3.3), перегруппировка фенилгидроксиламина в /г-аминофенол (разд. Г, 8.1) перегруппировка сложных эфиров фенолов по Фрису (разд. Г, 5.1.7.1). В ходе этих реакций заместитель полностью отделяется от субстрата. Отщепившийся остаток выступает в роли катиона в реакции электрофильного замещения в ароматическом ядре. Исследования показывают, что эта реакции протекают межмолеку-лярно, например  [c.283]


    РЕАКЦИИ АРОМАТИЧЕСКИХ СОЕДИНЕНИЙ СО СЛОЖНЫМИ ЭФИРАМИ [c.234]

    По мнению этих исследователей, действие силикагеля объясняется отчасти его дегидратирующими свойствами (как известно, силикагель успешно применяют в качестве катализатора при синтезах сложных эфиров, алкилировании в паровой фазе аммиака и анилина действием спиртов и других реакциях, при которых, как и в данном случае, происходит выделение в оды). Несомненно, однако, что силикагель обладает также специфичностью действия при реакции нитрования N 2 ароматических соединений, так как другие дегидратирующие катализаторы, как, например, окись магния и другие, не оказывают на эту реакцию никакого каталитического действия. [c.413]

    Вообще говоря, 1,4-дикарбонильные соединения труднее получить, чем 1,3- (прямая конденсация) или 1,5- (присоединение по Михаэлю) дикарбонильные соединения это видно из относительно небольшого числа разработанных синтетических подходов к производным 7-оксокислот. Кислотная функция может быть введена реакцией Манниха [55] с последующим получением четвертичного амина, замещением цианогруппой и гидролизом схема (31) . Енамины реагируют со сложными эфирами а-бромкислот, образуя соответствующий замещенный енамин, который можно избирательно гидролизовать [56] с сохранением сложноэфирной функции схема (32) . Аналогична по своему принципу реакция илида а-оксопиридиния со сложным эфиром а-бромкарбоновой кислоты. В этом случае [57] получающуюся пиридиниевую соль восстанавливают цинком в уксусной кислоте схема (33) . Эквиваленты ацил-анионов сопряженно присоединяются к сложным эфирам а,р-ненасыщенных кислот. В качестве примера на схеме (34) приведена реакция, где карбонильная группа активирована и представлена в виде цианогидрина [68]. Альтернативно, ионы цианида и тиазолия можно применять в качестве катализаторов реакции альдегидов (ароматических) со сложными эфирами ненасыщенных кислот таким путем осуществлено значительное число превращений. На схеме (35) показано применение алкилиденянтарной кислоты для синтеза у-оксокислот [59] [c.207]

    По аналогии с реакциями в присутствии серной кислоты в данном случае можно ожидать двух вариантов в направлении реакции 1) образование сложного эфира и его взаимодействие с ароматическими соединениями 2) образование этиленовых углеводородов (из сложных эфиров) и присоединение к ним ароматических соединений. [c.549]

    Реакции первой группы противоположны рассматриваемому в последующей главе дегидрированию. При этом сохраняется первоначальное расположение атомов в цепи и кольце. Присоединение водорода может происходить к двойной, тройной и ароматической углерод-углеродной связи или к ароматическому кольцу в целом, а также по С=0 связи в альдегидах, кетонах, сложных эфирах и кислотах, по С=К и С=Ы связям в азотистых соединениях и другим кратным связям  [c.9]

    Ацетилен взаимодействует с 2 молями ароматического соединения, давая 1,1-диарилэтаны, а другие алкины, если и реагируют, то плохо. Спирты более реакционноспособны, чем алкилгалогениды, хотя при катализе реакции кислотами Льюиса требуется большее количество катализатора, так как он расходуется на комплексообразование с группой ОН. Для катализа реакций с участием спиртов часто применяют протонные кислоты, особенно серную. При использовании в качестве реагентов сложных эфиров реакция осложняется конкуренцией между алкилированием и ацилированием (реакция 11-15). И хотя в этой конкуренции обычно преобладает алкилирование и вообще ею можно управлять правильным подбором катализатора, сложные эфиры карбоновых кислот редко используются в реакциях Фриделя — Крафтса. Среди других алкилирующих агентов — тиолы, сульфаты, сульфонаты, алкилнитросоединения [199] и даже алканы и циклоалканы в условиях, когда их можно превратить в карбокатионы. Здесь следует отметить и этиленоксид, с помощью которого можно ввести в кольцо группу СН2СН2ОН, и циклопропан. Для реагентов всех типов реакционная способность соответствует следующему ряду аллильный и бензиль-ный тип>третичный>вторичный> первичный. [c.349]

    Наиболее эффективно восстановительное алкилирование протекает для каменных углей. Так, растворимость анжерского каменного угля марки ОС при времени наработки угольных анионов 0,25 ч составила 86,3%, а при увеличении продолжительности до 2,0 ч возросла до 93,0%. Основными реакциями, приводящими к повышению растворимости, являются С-алкилирование ароматических фрагментов ОМУ и О-алкилирование. Продукты алкилирования характеризуются сравнительно высоким содержанием ароматических соединений, высокой степенью замещения водорода на алкильные радикалы и заметным содержанием сложных и простых эфиров. [c.10]

    Алкилированием органических кислот олефинами мы будем называть реакцию присоединения 0ргани(чес ких кислот к олефинам по аналогии с алкилированием изопарафинов и ароматических соединений олефинами. Эта реакция была открыта больше 70 лет назад Д. П. Коноваловым [1, 2] и, несмотря на свою простоту, широкую сырьевую базу и большое значение образующихся продуктов — сложных эфиров, не только не внедрена в промышленность, но до последнего времени оставалась плохо изученной даже в лабораторных условиях. Не была установлена сравнительная активность в ряду олефинов по отношению к органическим кислотам, а также активность кислот по отношению к олефинам. Реакция изучалась главным образом на примерах присоединения уксусной и трихлоруксусной кислот к изоолефинам. Оригинальные исследования по взаимодействию органических кислот с нормальными и замещенными олефинами отсутствовали. Патентные сведения относились в основном к уксусной и трихлоруксусной кислотам. Выходы эфиров в лучших случаях составляли 20— [c.7]


    Пример 3. Соединение нейтрального характера реагирует со щелочами при нагревании с образованием соли и летучего органического вещества. Качественные реакции на азот, серу и галогены отрицательные. В коротковолновой части (у > 2500 см ) ИК-спектра (рис. 1.13) имеются только полосы валентных колебаний водорода насыщенных радикалов (между 2800 и 3000 см ). Очень слабая широкая полоса при частоте 3500 см — вероятнее всего примесь воды (или спиртов), второй слабый максимум при 3450 см" — обертон очень сильной полосы при 1730 см" -. Следовательно, вещество не содержит никаких группировок ОН (а также ЫН и 5Н, но они исключаются уже данными качественных реакций), не содержит водорода при тройных связях С=С, двойных связях С=С и С=0 или ароматических кольцах. Отсутствие этих фрагментов подтверждается также исследованием области частот 1500—2500 см , в которой имеется лишь полоса 1730 см . Эта очень сильная полоса точно соответствует частоте валентных колебаний карбонила в нескольких классах органических веществ (см. таблицу характеристических частот в конце книги), но с учетом указанных химических свойств ее следует приписать сложноэфирной группировке (лактоны, имеющие те же частоты валентных колебаний С=0, не образуют летучих веществ при реакции со щелочами ангидриды карбоновых кислот имеюг в этой области две полосы и также не образуют летучих веществ при действии щелочей). Не исключена, однако, возможность одновременного присутствия кетонной группы (второго карбонила) и (или) группировки С—О—С простых эфиров. Таким образом, исследуемое вещество скорее всего является сложным эфиром какой-то кислоты предельного или [c.25]

    Кислотные свойства органических соединений связаны с наличием в их составе карбоксильной —СООН и сульфогруппы —SO3H, причем константы диссоциации имеют, как правило, порядок 10 —10 . Основной характер имеют алифатические -и ароматические амины. В протолитические реакции вступают также сложные эфиры, вещества, содержащие гидроксильные и карбонильные группы. Например, альдегиды и кетоны реагируют с гидрохлоридом гидроксиламина с образованием НС1, которую затем оттитровывают раствором гидроксида натрия или калия R R [c.213]

    Авторы сохранили общий строй книги, но для облегчения пользования материалом отказались от разделения процессов на реакции, проходящие в присутствии и в отсутствие щелочи, воспользовавщись классификацией по типам реакций. Введены отдельные разделы по хиральным и полимерносвязанным катализаторам, которые отсутствовали в первом издании, а также новые разделы относительно нуклеофильного ароматического замещения и реакций металлоорганических соединений в условиях межфазного катализа. Основную часть книги занимает гл. 3, посвященная практическому использованию межфазного катализа, где достаточно подробно освещены вопросы техники проведения межфазных реакций, а затем последовательно обсуждено применение межфазного катализа в реакциях замещения (синтез галогенидов, включая фториды, синтезы нитрилов, сложных эфиров, тиолов и сульфидов, простых эфиров, Ы- и С-алкилирование, в том числе амбидентных ионов), изомеризации и дейтерообмена, присоединения к кратным С—С-связям, включая неактивированные, присоединения к С = 0-связям, р-элиминирования, гидролиза, генерирования и превращения фосфониевых и сульфониевых илидов, в нуклеофильном ароматическом замещении, в различных реакциях (ион-радикальных, радикальных, электрохимических и др.), в металлоорганической химии, при а-элиминировании (генерировании и присоединении дигалокарбенов и тригалометилид-ных анионов), окислении и восстановлении. В каждом разделе приведены конкретные методики проведения реакций в различных условиях межфазного катализа и таблицы примеров синтеза разнообразных классов соединений. В монографии использовано более 2000 литературных источников. [c.6]

    Анализ ИК-спек гров окисленных образцов ятелыюго топпива показал наличие сложной с.меси кислородсодержащих ароматических структур, состояитих из гидропероксидов, спиртов, фенолов, ароматических и арилароматическнх. эфиров (ароматических альдегидов и карбоновых кислот), сложных эфиров ароматических карбоновых кислот, которые легко. могут вступать в реакции уплотнения (этерификации, конденсации, полимеризации) с образованием высокомолекулярных соединений, часть которых коагулирует в нерастворимые соединения, вызывая осадко- и смолообразование [6]. [c.117]

    В последние годы все большее внимание привлекает эффект мицеллярного катализа [28] — ускорение или замедление органических реакций в результате солюбилизации реагентов (Или одного из них) мицеллами коллоидного ПАВ. Таковы, например, реакции гидролиза и сольволиза сложных эфиров, ацеталей, ортоэфиров, некоторые реакции замещения соединений алифатического и ароматического рядов. Увеличение константы скорости реакции при протекании ее в мицеллах может достигать 1—2 порядков по сравнению со скоростью реакции в воде. [c.85]

    Арилирование соединений типа 2СНг2 аналогично реакции 10-96, рассмотренной в т. 2, где дано определение группы 2. Активированные арилгалогениды, как правило, дают хорошие результаты [130]. В присутствии избытка амида натрия в реакцию можно вводить даже неактивированные арилгалогениды [131]. Подобным образом можно арилировать также простые кетоны [132] и сложные эфиры. Реакция с неактивированными галогенидами происходит ио ариновому механизму и представляет собой метод расширения синтезов на основе малонового эфира (или сходных соединений) с использованием ароматических молекул. Основание здесь выполняет две функции оно отрывает протон от молекулы 2СН22 и катализирует реакцию с образованием дегидробензола. Реакция была использована для осуществления процесса замыкания цикла [133]  [c.29]

    По той же причине наблюдаются различия в величинах удерживания для определенного спирта при применении диоктилсебацината, динонилфта-лата, дибутилфталата и трикрезилфосфата. Неподвижные фазы типа сложных эфиров обладают средней растворяющей способностью по отношению к алканам, простым и сложным эфирам, кетонам, меркаптанам и тиоэфирам. Благодаря их электроне акцепторным свойствам наблюдается также сильное взаимодействие с донорами электронов, например с олефинами, ароматическими углеводородами и гетероциклическими соединениями, но селективность отделения алкенов от алканов незначительна она немного возрастает в последовательности диоктилсебацинат — динонилфталат — дибутилфталат — трикрезилфосфат (см. табл. 1). Вообще можно установить, что селективность не особенно сильно выражена и для других гомологических рядов вследствие одновременного присутствия арильных и алкильных групп (которые обусловливают растворяющую способность по отношению к углеводородам) и карбоксильных или фосфатных групп (которые способствуют растворению кислородных соединений). Исключение составляет лишь разделение галогенопроизводных углеводородов, протекающее, впрочем, в случае сложных эфиров не хуже, чем на многих других неподвижных фазах, например нитрил-силиконовых маслах (Ротцше, 1963). При температурах выше 120° при исследовании спиртов и аминов следует быть осторожным вследствие возможности химических реакций с неподвижной фазой. [c.202]

    Структура молекулы и температура плавления (между 100— 140 С) говорят об их растворимости в ароматических углеводородах и уайт-спирите [2, 3]. Для модификации канифоли часто исиользуют низкомолекулярные алкилфенольные смолы, которые активно взаимодействуют с маслами. Эти смолы способствуют пре-вращеиию кислот, содержащихся в канифоли, в полиэфир поли-карбоновой кислоты либо через образование хроманового кольца (см. разд. 3.3.5 и 17.1), либо, что более вероятно, через алкилиро-вание, чему благоприятствует кислотность среды и наличие карбоксильной груины. Фенольную смолу добавляют к раснлавленной канифоли ири ПО—140°С в этих условиях смола должна легко растворяться, потому что в противном случае может произойти самоконденсация резола. Затем температуру повьпнают примерно до 250 °С и добавляют в систему глицерин илн иентаэритрит с целью образования сложных эфиров и повышения молекулярной массы смолы. Прн температуре выше 250 °С начинается декар-боксилирование. В некоторых случаях реакцию проводят при относительно высоких температурах с участием новолаков. Кислоты канифоли могут предварительно взаимодействовать с формальдегидом (механизм реакции Принса, см. разд. 2.17), образуя соединения, содержащие гидроксильные группы в таких случаях интервал температур размягчения канифоли поднимается примерно с 45 до 105 °С. Прн температурах выше 125 °С в систему рекомендуют медленно добавлять ангидрид малеиновой кислоты (механизм реакцпи 1,4-присоедииения сопряженных диенов)  [c.206]

    Для восстановления сложных эфиров в спирты наряду с хро-митными катализаторами применяется скелетный никель. В присутствии избытка этого катализатора (до 1,5 г/г) эфиры гидрируются при температуре 25-125 °С и давлении 350 атм с выходами не менее 80 % имеющиеся в молекуле исходного соединения ароматические кольца также восстанавливаются. Эфиры -аминокислот на активном никеле Ренея при 50 °С и 150-200 атм с удовлетворительными или хорошими выходами дают аминоспирты повышение температуры более чем до 100 °С недопустимо, так как при этом реакция может протекать со взрывом  [c.73]

    Этот метод синтеза применим только для получения сложных виниловых эфиров, простых виниловых эфиров (из фенола) и винил-сульфидов (из тиофенола или алкилтиола) [164]. Для проведения реакции ароматическую или алифатическую карбоновую кислоту нагревают саму по себе или в каком-нибудь растворителе с дивинил-ртутью, полученной из хлорида ртути(II) и винилмагнийбромида в тетрагидрофуране [165]. В отсутствие растворителя реакция обычно проходит более чем на 50% за время меньше 5 мин при нагревании на паровой бане. Для безопасности реакцию необходимо проводить в хорошо вентилируемой тяге, поскольку дивинилртуть высоко токсична. Если проводить реакцию в инертном растворителе, можно выделить образующийся в качестве промежуточного соединения винилртутный эфир R 00Hg H = H2. Выходы виниловых сложных эфиров составляют от 38 до 74%. [c.306]

    Процесс проводят, вводя окись этилена в суспензию терефталевой кислоты в органическом растворителе, способном, как правило, растворять этерифицированные продукты реакции. Катализатор должен также растворяться в выбранном растворителе. В качестве растворителей предлагают этанол, бутанол и изопропанол [41], смесь бутанола и метилизобутилкетона [42], различные кетоны [43, 44], ароматические и алифатические углеводороды [45], этиленгликоль [46], галоидные углеводороды [47], сложные эфиры уксусной и других кислот [47], алкилнитрилы [39, 48]. В качестве катализаторов преимущественно рекомендуют вторичные и третичные амины, хорошо растворимые в вышеуказанных растворителях. Аминные катализаторы должны быть удалены из мономерных продуктов реакции, так как в их присутствии получаются окрашенные полиэфиры. Для получения неокрашенных продуктов рекомендуют в качестве катализаторов этерификации применять триалкилфосфины [44, 49], триарилфосфины [48], органические соединения титана, германия или сурьмы [50]. [c.34]

    Термическая стойкость комплексного соединения зависит от характера входящих в него радикалов. Если К — арильный или алициклический радикал, то комплексное соединение распадается при сравнительао низкой температуре (40—42 °С) если же Н — алкильный радикал, то для распада более стойкого в этом случае комплексного соединения требуется и более высокая температура (110—120 °С). Термическая стойкость комплексного соединения, содержащего а-тиенильный радикал, несмотря на его ярко выраженный ароматический характер, также высока, поэтому в обычных условиях проведения магнийорганических реакций комплексное соединение не распадается, и после гидролиза вместо сложных эфиров а-тиенилгликолевой кислоты (вторичной а-оксикислоты) образуются с выходом от 30 до 50% сложные эфиры а-тиенилглиоксалевой кислоты. [c.162]

    Структура книги и рекомендации но ее использованию. После общих замечаний по планированию, подготовке и проведению органических реакций, по аппаратурному обеспечению эксперимента, ведению лабораторного журнала (гл. I) говорится о получении и превращениях соединений с простыми функциональными группами алкенов, алкинов, галогеналканов, спиртов, простых эфиров и оксиранов, органических соединений серы, аминов, альдегидов и кетонов, а также их производных, карбоновых кислот и их производных, ароматических соединений (гл. 2). Полученные соединения служат затем в качестве строительного материала для синтеза более сложных молекул. После описания важнейших методов образования связи С—С (разд. 3.1) следует раздел, посвященный образованию и превращению карбоциклов (разд. 3.2). гетероциклов (разд. 3.3) и красителей (гл. 4). Далее изложены. методы введения защитных групп и изотопных меток (гл. 5), а также приведены примеры регио- и стереоселективных реакций (гл. 6). Центральное место в книге занимают более сложные синтезы аминокислот, алкалоидов, пептидов, углеводов, терпенов, вита.минов, ферромонов, простаглан-динов, инсектицидов и фармацевтических препаратов, планирование и разработка которых обсуждаются с привлечением принципов ретро-синтетического расчленения (гл. 7). Почти все рассмотренные в этой [c.10]

    В последние годы ведутся систематические исследования в области химии алкилгипохлоритов, направленные на изучение их свойств и расширенное использование в синтезе практически важных соединений. Результаты исследований их гомо- и гетеро-литических превращений, приводящих к ценным продуктам сложным эфирам, лакто-нам, хлоралкилароматическим соединениям, кетонам и дикетонам, хлорированным ке-тонам и спиртам, 2-алкоксиоксациклоалканам, линейным и циклическим ацеталям и др., свидетельствуют о ценности алкилгипохлоритов как реагентов органического синтеза. Однако сведения о взаимодействии различных алкилгипохлоритов с сульфидами, вторичными аминами, меркаптанами, спиртами, пространственно затрудненными фенолами, енолятами щелочных металлов, олефинами, ароматическими эфирами отсутствуют или крайне ограничены, чаще всего, изучением реакций трет-бутилгипохлорита. [c.3]


Смотреть страницы где упоминается термин Реакции ароматических соединений со сложными эфирами: [c.458]    [c.136]    [c.905]    [c.728]    [c.370]    [c.111]    [c.42]    [c.338]    [c.364]    [c.450]    [c.371]    [c.294]    [c.40]    [c.71]    [c.344]    [c.247]    [c.72]    [c.113]    [c.29]    [c.10]    [c.445]   
Смотреть главы в:

Фтор и его соединения Том 1 -> Реакции ароматических соединений со сложными эфирами




ПОИСК





Смотрите так же термины и статьи:

Реакции сложные

Соединения сложные



© 2025 chem21.info Реклама на сайте