Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние молекулярного веса полимера на температуру текучести

    Влияние молекулярного веса полимера на температуру текучести [c.198]

    Оставляя пока без внимания влияние химической и физической модификации (создание пространственной химической сетки, наполнение и т. д.), рассмотрим влияние молекулярного веса Выше было показано, что, если свойства полимера определяются подвижностью отдельных участков макромолекул (сегментов), они быстро достигают некоторых предельных значений и перестают изменяться с дальнейшим ростом молекулярного веса. Это относится к плотности б. гемпературе стеклования и т. д. Наоборот, свойства, зависящие эт размеров макромолекул в целом, неограниченно изменяются ростом молекулярного веса. Растет макроскопическая вязкость повышается температура текучести и т. д. Как влияет молекулярный вес на интервал вынужденной эластичности  [c.151]


    Изменение молекулярного веса полимера не влияет на общий вид термомеханической кривой, но оказывает существенное влияние на изменение начальной температуры плавления материала . Например, при уменьшении молекулярного веса кристаллической фракции в 5 раз начальная температура плавления полипропилена снижается примерно на 50°С. Следовательно, изменяя молекулярный вес полимера и соотношение кристаллической и аморфной фракций в нем, можно в широких пределах изменять текучесть полипропилена. [c.266]

    Длина молекул в полимерах, получаемых в промышленных масштабах, изменяется в широких пределах от очень коротких молекулярных цепей до очень длинных. Эти колебания зависят от условий синтеза и природы полимера. Вывод о зависимости вязкости от молекулярного веса можно сделать почти интуитивно повышение молекулярного веса должно увеличивать вязкость, т. е. сопротивление течению. Однако характер влияния молекулярновесового распределения не является столь очевидным. На практике мерой текучести материала в широком диапазоне давлений и температур может служить длина заполняемой спирали специальной литьевой формы. [c.42]

    Ричардс [24], вероятно, первый установил влияние коротких боковых цепей на степень кристалличности полиэтилена и тем самым на физические свойства полимера. Он показал, что, хотя молекулярный вес и распределение по молекулярным весам оказывают лишь незначительное влияние на изменение степени кристалличности (чем короче цепь, тем меньше степень кристалличности), разветвление значительно способствует снижению кристалличности. Наличие коротких боковых цепей, влияя на кристалличность, тем самым может в определенной степени оказывать влияние на такие физические свойства, как модуль Юнга при растяжении, модуль при изгибе, температура начала текучести или твердость. Каждый из этих показателей зависит от степени кристалличности полимера. Прочность на разрыв, устойчивость к раздиру и морозостойкость в большей степени зависят от молекулярного веса и лишь незначительно от степени кристалличности. [c.250]

    Влияние молекулярного веса на температуру текучести полимеров впервые было изучено В. А. Каргиным и Т. И. Сого-Л0В0Й2 . Термомеханическяе кривые полимеров одного полимер- [c.190]

    Сперати, Франта и Старкуэзер [25] исследовали влияние коротких и длинных разветвлений на физические свойства полиэтилена. Для характеристики разветвлений с короткой цепью они использовали данные инфракрасной спектроскопии [7], а для разветвлений с длинной цепью данные по определению молекулярных весов [14]. Они пришли к выводу, что наличие коротких разветвлений влияет на кристалличность, плотность, твердость, температуру начала текучести, температуру плавления и сорбцию растворителей. Плотность и молекулярный вес полимера Мп определен на основании вязкости расплава) влияют на твердость и относительное удлинение при разрыве. Молекулярный вес полимера Мп) и наличие ответвлений с длинной цепью влияют как на высокоэластические свойства расплавов полимеров, так и на его прочность на разрыв. [c.250]


    Практически задача получения полимеров сводится к необходимости расположения молекул угольного вещества определенным образом, в результате чего будут создаваться те или иные структуры. Эти процессы начинаются с разрыва макромолекул угля на осколки с более низким молекулярным весом. Под влиянием температуры и механических напряжений возникает текучесть и вызывается так называемое химическое течение , которое находится в прямой зависимости от скорости образования новых полимерных соединений и их стабилизации. В отличие от процессов коксообразования, где при термической деструкции имеете место высокая активность получающихся осколков с образованигм неплавких и нерастворимых продуктов [c.11]

    Начальный коэффициент вязкости (или просто начальная вязкость) закономерно растет с понижением температуры и повышением молекулярного веса. При очень большом молекулярном весе (5,3-10 ) и низкой температуре (15° С) вязкость полиизобутилена очень велика, она составляет 0,3-10 г1см-сек). Текучесть полимера с такой вязкостью выражена очень слабо, и по этому признаку высокомолеку лярный полиизобутилен близок к полимерам, находящимся в стеклообразном состоянии. Это не означает, конечно, что утрачивается подвижность отдельных сегментов. Она полностью сохраняется, и полимер проявляет все свойства эластомера в области высокоэластичности. Влияние роста молекулярного веса можно лишь уподобить эффекту вулканизации, т. е. сшиванию химическими связями. [c.230]

    В некоторых случаях а-максимум считали совпадающим с точкой плавления кристаллитов. Без сомнения, на процесс плавления кристаллитов оказывает влияние приложение механических напряжений, что сказывается на явлении механической релаксации. Температура этого релаксационного процесса может совпадать либо с а-максимумом, либо со вторичным подъемом затухания — -процессом. В первом случае после расплавления кристаллитов необходимо еще предусмотреть другой механизм сцепления, чтобы предотвратить возможность появления текучести сразу при а-максимуме. Такого рода сцепление при очень больших значениях молекулярных весов может проявиться в форме переплетения цепей молекул, как это имеет место для очень длинных несшитых полимеров. При обычно достижимых значениях молекулярных весов у промышленных полимеров это очень маловероятио. [c.607]

    Вопрос о влиянии разветвленности цепей был подробно исследован на примере полиэтилена. Было показано, что многие макроскопические свойства полиэтилена определяются разветвлением цепных молекул, которое ограничивает кристаллизацию полиэтилена8 > Короткие боковые цепи препятствуют кристаллизации и таким образом влияют на свойства, зависящие от кристаллической части. Увеличение числа коротких боковых цепей уменьшает плотность полимерного материала, понижает температуру плавления, материал легче деформируется, более растворим и газопроницаем. Границы появления текучести перемещаются при этом в область более низких температур. При равном молекулярном весе более разветвленные молекулы оказывают меньшее гидродинамическое сопротивление при течении, т. е. разветвление длинных цепей сказывается на вязко-упругих свойствах расплава, а следовательно, на условиях переработки. Сопротивление раздиру уменьшается с увеличением степени разветвленности. Относительное удлинение в момент разрыва, так же как твердость и теплостойкость, зависят прежде всего от числа коротких разветвлений и среднего молекулярного веса. На этом примере иллюстрируется сложность проблемы влияния химического строения полимеров на их свойства. [c.45]


Смотреть страницы где упоминается термин Влияние молекулярного веса полимера на температуру текучести: [c.198]    [c.198]    [c.158]    [c.110]   
Смотреть главы в:

Физико-химия полимеров 1963 -> Влияние молекулярного веса полимера на температуру текучести




ПОИСК





Смотрите так же термины и статьи:

Влияние молекулярного веса

Текучесть

Текучесть полимеров

Температура мол. веса

Температура полимеров

Температура текучести

Температуры текучести см Текучести температура



© 2025 chem21.info Реклама на сайте