Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Периодическая пятая

    В пятом периоде наблюдается такая же картина сначала заполнение 5х-орбиталей, затем заполнение уровня с и = 5 прерывается заселением погруженных в общее атомное электронное облако 4 -орбиталей, которое соответствует построению второго ряда переходных металлов, и, наконец, заполнение 5р-орбиталей, завершающееся построением валентной структуры благородного газа ксенона, Хе 4 5> 5р. Общим свойством всех благородных газов является наличие у них заполненной внешней электронной оболочки х р. В этом и заключается причина упоминавшейся выше особой устойчивости восьмиэлектронных валентных оболочек (см. гл. 7). Запоздалое заполнение /-орбиталей (и /-орбиталей) обусловливает появление неодинаково длинных периодов в периодической системе первый период содержит 2 элемента, второй включает 8 элементов, а третий тоже только 8, хотя мог бы содержать 18 элементов (на уровне с и = 3 размешается 18 электронов), затем следует четвертый период с 18 элементами, хотя он мог бы содержать 32 элемента (на уровне с и = 4 размещается 32 электрона). [c.398]


    Группы и подгруппы. В соответствии с максимальным числом электронов на внешнем слое невозбужденных атомов элементы периодической системы подразделяются на восемь групп. По-/ожение в группах 5- и /7-злементов определяется общим числом электронов внешнего слоя. Например, фосфор (Зз Зр ), имеющий на внеш-кем слое пять электронов, относится к V группе, аргон — [c.30]

    Редкоземельные элементы обладают очень сходными химическими свойствами, их валентность равна трем. По-видимому, все этн элементы необходимо было поместить в один столбец периодической таблицы. Однако ни один из столбцов не был таким длинным, чтобы вместить четырнадцать элементов. Далее, поскольку атомные веса всех редкоземельных элементов очень близки, их следовало поместить в один горизонтальный ряд, другими словами, в один период. В принципе их можно было поместить в шестой период, если предположить, что он длиннее, чем четвертый и пятый, которые в свою [c.104]

    У цезия начинается постройка шестой оболочки, хотя не только не образовался еще 5 -подуровень на пятой оболочке, но и на четвертой еще не начиналась постройка 4/-подуровня. Заполнение этого подуровня, находящегося уже глубоко внутри атома, происходит только у элементов от Се (2 = 58) до Ьи (2 = 71), составляющих группу редкоземельных элементов, или лантаноидов. Атомы этих элементов обладают аналогичной структурой двух наружных оболочек, но различаются по степени достройки внутренней (четвертой) оболочки. Эти элементы весьма мало различаются между собой по химическим свойствам, так как химические свойства определяются главным образом структурой наружных электронных оболочек. Подобный же случай встречается еще раз в седьмом периоде периодической системы. У элементов, следующих за актинием и называемых актиноидами, происходит достройка f подуровня пятой оболочки. [c.41]

    Главная подгруппа VI группы периодической системы химических элементов Д. И. Менделеева, называемая также подгруппой кислорода, состоит из пяти элементов кислорода О, серы 8, селена 8е, теллура Те и полония Ро (последний радиоактивен). Внешние электронные слои их атомов содержат 6 электронов и имеют конфигурацию Главная особенность этих элементов — способность присоединять 2 электрона с образованием восьмиэлектронного слоя ближайшего инертного элемента, т. е. проявление степени окисления — 2  [c.109]

    У элементов 2-го периода имеется четыре валентные орбитали, поэтому максимально возможное число ковалентных связей равно четырем. У элементов 3-го и последующих периодов роль валентных могут играть также свободные внешние -орбитали, а для элементов 5-го и последующих периодов — даже /-орбитали. В соответствии со сказанным в главных подгруппах периодической системы валентные возможности элементов возрастают. У -элементов в образовании химических связей принимают участие пять п—1) -, одна пв- и три пр-орбиталей. К сожалению, не всегда представляется возможным установить численное значение максимальной валентности элемента в соединении. Если для элементов 2-го периода эТот вопрос решается однозначно, то для элементов других периодов мнения ученых весьма противоречивы. [c.62]


    Ванадий, ниобий и тантал составляют VB-подгруппу периодической системы, К этой подгруппе относится также элемент № 105, искусственно полученный в 1967 г., для которого предложено название нильсборий. Электронная конфигурация двух последних уровней атомов этих элементов выражается формулой (п—l)d ns-, а для ниобия 4d 5s (п — номер периода). Валентными электронами являются ( — )d и ns, но только в возбужденном состоянии атомов (кроме ниобия). Таким образом, проявляемая этими элементами в соединениях максимальная валентность равна пяти. Ванадий и ниобий являются моноизотопными элементами, а природный тантал состоит почти целиком из изото- [c.275]

    Группы и подгруппы. В соответствии с максимальным числом электронов на внешнем квантовом слое невозбужденных атомов элементы периодической системы подразделяются на восемь групп. Положение в группах з- и р-элементов определяется общим числом электронов внешнего квантового слоя. Например, фосфор (35= Зр ), имеющий на внешнем слое пять электронов, относится к V группе, аргон (35 Зр ) — к УП1, кальций (45 ) — ко II группе и т. д. [c.28]

    Например, в настоящее время установлено, что атомные массы возрастают в такой последовательности Ре, N1, Со, Си в четвертом периоде (ср. с 4-й строкой рис. 7-1), Яи, КЬ, Рс1, Ag в пятом периоде (ср. с 6-й строкой рис. 7-1) и 08, 1г, Р1, Аи в шестом периоде (ср. с 10-й строкой рис. 7-1). Однако N1 по своим свойствам больше напоминает Рё и Р1, чем Со. Кроме того, оказалось, что Те имеет большую атомную массу, чем I, но I несомненно сходен по химическим свойствам с С1 и Вг, а Те сходен с 8 и 8е. Наконец, после открытия благородных газов обнаружилось, что Аг имеет большую атомную массу, чем К, тогда как все остальные благородные газы имеют меньшие атомные массы, чем ближайшие к ним щелочные металлы. Совершенно очевидно, что во всех трех отмеченных случаях нельзя руководствоваться атомными массами при размещении элементов в периодической системе. Поэтому всем элементам периодической системы были приписаны порядковые номера от 1 до 92 (в наше время до 105). (Порядковые номера элементов приблизительно соответствуют возрастанию их атомных масс.) Если расположить элементы в периодической таблице в последовательности возрастания их порядковых номеров, химически сходные элементы образуют в ней вертикальные колонки (семейства или группы). [c.311]

    Пятая главная подгруппа периодической системы [c.154]

    Числом электронов наружной оболочки определяются валентные состояния, свойственные данному элементу, а следовательно, типы его соединений — гидридов, окислов, гидроокисей, солей и т. д. Так, в наружных оболочках атомов фосфора, мышьяка, сурьмы и висмута находится одинаковое число (пять) электронов. Этим определяется одинаковость их основных валентных состояний (—3, -fЗ, -Ь5), однотипность гидридов ЭНз, окислов Э2О3 и ЭаОб, гидроокисей и т. д. Данное обстоятельство в конечном счете и является причиной того, что указанные элементы располагаются в одной подгруппе периодической системы. [c.42]

    В настоящее время существует несколько вариантов графического построения периодической системы. Рассмотрим один из них — короткопериодный (см. первый форзац). Эта таблица состоит из 10 горизонтальных рядов и 8 вертикальных столбцов, называемых группами. В первом горизонтальном ряду только два элемента — водород Н и гелий Не. Второй и третий ряды образуют периоды по 8 элементов, причем каждый из периодов начинается щелочным металлом и кончается инертным элементом. Четвертый ряд также начинается щелочным металлом (калий), но в отличие от предыдущих рядов он не заканчивается инертным элементом. В пятом ряду продолжается последовательное изменение свойств, начавшееся в четвертом ряду, так что эти два ряда образуют один так называемый большой период из 18 элементов. Как и предыдущие два, этот период начинается щелочным металлом К и кончается инертным элементом [c.21]

    Прп некоторых значениях параметров в системе (8) и при достаточно малом е в системе (7) возникают автоколебания. Динамическая спстема (8) имеет довольно сложный фазовый портрет, может иметь до пяти стационарных точек, допускает существование устойчивых и неустойчивых периодических решений. Для определения констант предложен следующий метод. Прп некоторых значениях параметров стационарное решение теряет устойчивость, и из него зарождается устойчивое периодическое решение. При дальнейшем изменении парциального давления это решение опять переходит в устойчивую стационарную точку. Таким образом, можно выписать четыре уравнения для определения стационарных точек, два условия на линеаризованную задачу, характеризующие зарождение и исчезновение колебаний, четыре уравнения для скоростей реакции (измеряемых в эксперименте) и их производных, два уравнения для периодов зарождающихся колебаний. Как показывают расчеты, эти уравнения позволяют определить все константы, входящие в уравнения. При [c.88]

    Периодически проверять аксиальное положение ротора, производя замеры между гайкой ротора п торцом крышки подшипника (со стороны пяты). [c.201]

    Элементы называют также переходными. Они расположены в периодической системе в больших периодах между и / -элемен-тами. Как известно (см. табл. 3), характерной особенностью переходных элементов является то, что в их атомах заполняются орбитали не внешнего слоя (как у 5- и р-элементов), а предвнешнего (с1-элементы) слоя. У -элементов валентными являются энергетически близкие девять орбиталей — одна пх-орбиталь, три пр-орбитали и пять (п — 1) г-орбиталей  [c.503]


    Такой процесс является изменяющимся во времени, или нестационарным. В соответствии с принятой в книге системой изложения можно сказать, что для нестационарных процессов в расширенном уравнении Дамкелера всегда присутствует пятый член, характеризующий локальные (местные) изменения в системе. Однако во внимание следует принимать только два доминирующих члена этого уравнения (см. гл. 10 и И). В гл. 2 указывалось также, что зависимость (14-1) характерна для установок периодического действия. Таким образом, при исключении конвективного потока возможны три общих случая осуществления периодического действия элемента процесса. Для потока компонентов такие случаи указаны в табл. 14-1. [c.294]

    Тяжелые металлы Элементы с большой атомной массой, обычно из пятого и шестого периодов периодической системы [c.548]

    Общая закономерность, наблюдаемая во втором периоде периодической системы, заключается в том, что каждый новый электрон в атоме следующего элемента удерживается более прочно из-за увеличивающегося заряда ядра. Поскольку остальные 25- и 2р-электроны находятся приблизительно на таком же расстоянии от ядра, как и добавляемый электрон, он практически не экранируется ими от последовательно возрастающего положительного заряда ядра. Этот возрастающий заряд оказывает на появляющийся в атоме фтора, Р, пятый 2р-электрон больщее влияние, чем увеличивщееся межэлектронное отталкивание. Поэтому пятый р-электрон в атоме Р удерживается очень прочно и первая энергия ионизации снова возрастает. Наиболее устойчивая конфигурация образуется при появлении щестого 2р-электрона, завершающего оболочку с п = 2, в атоме благородного газа неона, Ые  [c.395]

    Масло в сосуде II приводят в равновесие по растворенному воздуху с остальной частью объема сосуда. Для этого сосуды I и II периодически два раза в минуту встряхивают. Перед каждым встряхиванием уравнительную склянку 16 перемещают до совпадения уровней масла в бюретке и сравнительной трубке уравнительной склянки. Когда изменение уровня масла между встряхиваниями станет менее 0,1 мл, краном 10 соединяют сосуд II с атмосферой при отсоединенном сосуде I и через кран 2 сливают масло из сосуда II до метки 100 мл для удаления оставшегося дегазированного масла из отвода 3. Вновь изолируют сосуд II от атмосферы кранами 2 и 10. Бюретку 17 подключают к уравнительной склянке 16 краном 19 и отключают бюретку 15. Продолжают встряхивание сосудов I и II и наблюдение за изменением уровня масла в бюретке 17 и сравнительной трубке 18. Равновесие считается достигнутым, если результаты пяти последовательных отсчетов уровня масла отличаются не более чем на [c.160]

    Бромная кислота в отличие от хлорной и йодной в свободном виде неустойчива, и окислительные свойства у нее проявляются гораздо сильнее, чем у хлорной, хотя по силе эти кислоты примерно одинаковы. Йодная же кислота является слабой кислотой, кристаллизуется в виде дигидрата Н104 2И20 и обнаруживает свойства многоосновной кислоты, поскольку образует соли, отвечающие замещению всех пяти атомов водорода атомами металла, например NasIOe. Это неудивительно, так как крупный атом иода координирует вокруг себя больше атомов кислорода, чем бром или хлор (6 вместо 4). Такая же тенденция проявляется в других группах периодической системы химических элементов Д. И. Менделеева (ср., например, серную и теллуровую кислоты). [c.108]

    Общая продолжительность испытаний устанавливается стандартом в зависимости от срока службы материала с периодическим отбором образцов через интервалы 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000 и 10 ООО ч не менее пяти раз. [c.440]

    Так, согласно А. Ф. Капустинскому, в земных условиях атомы имеют обычные электронные структуры на глубине до 60—120 кле, что соответствует давлению 2-10 — 6-10 атм. На глубине примерно 3 тыс. км (что соответствует давлению в миллионы атмосфер) атомы приобретают уже иные структуры. Электронные уровни атомов последовательно заполняются до предельной емкости. Например, электронная структура элемента 6-го периода церия должна быть Периодическая система элементов, существующих в условиях столь высоких давлений, должна состоять лишь иэ пяти периодов (содержащих соответственно 2, 8, 18, 32 и 50 элементов). Необычная электронная структура атомов обусловливает особое состояние вещества, специфику его физических и химических свойств. По выражению А. Ф. Капустинского, это зона вырожденного химизма . [c.157]

    Эксплуатация в течение пяти лет полиметаллического катализатора КР-104, с периоДической его регенерацией, показала, что активность его не снизилась, подтверждением чему служат среднегодовые октановые числа (м. м.) риформатов  [c.132]

    Для доводки элементов пар трения из материалов групп А, Б, В, применяют чугунные притиры. Для доводки элементов пар трения из материалов группы Г применяют стеклянные притиры. Притиры необходимо периодически контролировать на плоскостность и править. Контроль притиров необходимо осуществлять после обработки на них не более пяти элементов пар трения. [c.144]

    Р А 3 Д Е л IV ПЯТАЯ ГРУППА ПЕРИОДИЧЕСКОЙ СИСТЕМЫ [c.389]

    Быстрые темпы технического прогресса в промышленности, все более усложняющиеся задачи в области хозяйствования вызывают необходимость в периодической переподготовке руководящих и инженерно-технических работников и ознакомления их с новейшими достижениями в области науки, техники, технологии и экономики. Для рещения этих проблем создаются специальные институты и факультеты повышения квалификации кадров или организуется чтение специальных курсов на самих предприятиях. В институтах и на факультетах повышения квалификации переподготовка указанных специалистов проводится через каждые пять лет работы в промышленности. [c.228]

    Главную подгруппу четвертой группы периодической системы )бразуют пять элементов — углерод, кремний, германий, олово и винец. [c.431]

    В 1884 г. Ньюлендс издал в виде книги все свои статьи и документально оформил претензии на приоритет открытия периодической системы на страницах hemi al News в виде заявки Немецкому химическому обществу. По-видимому, руководствуясь угрызениями совести, Королевское общество Великобритании присудило ему в 1887 г. медаль имени Дэви, спустя пять лет после того, как оно наградило этой же медалью Менделеева. [c.327]

    В последние годы во ВНИИнефтехиме проводились исследования по изучению реакции изомеризации парафиновых углеводородов С4-С12 в присутствии сверхкислотных катализаторов - системы фторидов металлов пятой группы периодической системы и фтороводорода, показавшие высокие технико-экономические преимущества этого процесса реакция осуществляется в жидкой фазе при 20-50 °С с высокими выходами изомерных углеводородов [105, 141]. [c.129]

    Элементы периодической системы подразделяются на восемь групп. Это соответствует максимальному числу электронов на внешнем слое их невозбужденных атомов. У 5- и р-элементо в (кроме Н и Не) число электронов внешнего слоя отвечает номеру группы, в которой они находятся. Например, элемент V группы Р (3s 3p ) имеет на внешнем слое пять электронов, элемент VIII группы Аг (Зй Зр ) —восемь электронов и т.д. [c.30]

    Количество чистого растворителя, подаваемого на разных ступенях очистки, должно быть одинаковым и соответствовать выбранной кратности растворителя к сырью.Температура первой ступени экстракции соответствует температуре низа экстракционной колонны при непрерывном противоточном процессе, а температура последней ступени (третьей или пятой) — температуре верха этой колонны. Разность между температурами последней и первой ступеней экстракции соответствует температурному градиенту противоточной экстракционной колонны. Вторую ступень при трехступенчатой экстракции проводят при температуре, средией между температурами первой и третьей ступеней (соответствующей температуре в середине колонны). Очистку проводят в экстракторах периодического действия (см. рис. 70). [c.186]

    В Западно-Турк.менской низменности выявлены источники высоко минерализованных вод с пленками нефти. Эти источники тоже приурочены к разрывам в земной коре, по которым вода с нефтью поднимается па дневную поверхность. Такие же источники с водонефтя-пой эмульсие есть в Грузш в междуречье Норы и Куры. На севере нашей страны на реке Ухте есть участки, где на поверхности воды периодически появляются газовые пузырьки и темные пятиа нефти. [c.44]

    На рпс. 1.3 изображены два последовательных технологических цикла аппарата периодического действия, каждый цикл 1а)торого образован последовательностью пяти операций за- рузкп реагента /, нагревания аппарата 2, основиого технологического процесса 3, охлаждения содержимого аппарата 4 и вы) рузки 5. [c.20]

    Технологическая схема установки изомеризации включает два реактора в одном протекает процесс изомеризации, в другом — регенерация катализатора. Изомеризацию проводят при 420— 470 °С и 0,5 ч 1. п-Ксилол выделяют методом низкотемпературнонг кристаллизации, о-ксилол — ректификацией. В периодической литературе нет данных о переработке различных видов сырья. Указывается лишь, что выход п-ксилола 78 вес. % на исходное сырье. В 1972 г. эксплуатировалось пять установок изомеризации I I. Комплекс установок максимальной мош ности с целью получения и-ксилола сооружен в Уилтоне (Англия), производительностью-140 тыс. т целевого продукта в год. [c.183]

    Практическая реализация алгоритмов решения (9)-(15) позволила получить ряд новых результатов. Во-первых, установлено, что в адиабатическом реакторе может быть реализовано более чем три стационарных режима. Для этого необходимо организовать в реакторе (в слое катализатора) стационарные волны расхода реактантов или периодическое или непрерывное изменеше по оси реактора тепловых или диффузионных потоков. Бифуркационные диаграммы в координатах макрокинетические параметры -температура реакциошюй смеси показывают либо наличие трех или пяти изолированных [c.21]

    Подготовка катионитов. Товарный образец измельчают, просеивают и отбирают определенную фракцию. Катиониты заливают пятикратным по объему количеством насыщенного раствора хлорида натрия и оставляют для набухания на 24 ч. После декантации катионит переносят в делительную воронку и промывают не менее пяти раз 5%-ным раствором соляной кислоты. Общий объем промывающего раствора должен быть больше объема катионита в 30 раз. При каждой промывке катионит взбалтывают с раствором и оставляют на 2 ч, периодически перемешивая. После пятого промывания соляной кислотой катионит промывают дистиллированной водой до нейтральной реакции по мети.иовому оранжевому. Такая подготовка переводит катионит в Н+-форму. Отмытый от кислоты катионит отфильтровывают на воронке Бюхнера, подсушивают на фильтровальной бумаге до состояния свободного отделения зерен друг от друга и хранят в банке с притертой пробкой. [c.119]

    Раздел IV. Пятая группа периодической еистемы [c.396]


Смотреть страницы где упоминается термин Периодическая пятая: [c.278]    [c.4]    [c.309]    [c.298]    [c.298]    [c.206]    [c.46]    [c.54]    [c.118]    [c.12]    [c.392]    [c.394]   
Учебник общей химии (1981) -- [ c.249 ]

Основы общей химии Том 2 Издание 3 (1973) -- [ c.382 , c.491 ]




ПОИСК





Смотрите так же термины и статьи:

Бинарные соединения неметаллов пятой группы периодической системы Соединения азота с металлами

Карбонилы металлов пятой группы периодической системы

Металлы пятой группы периодической системы

Металлы четвертой, пятой, шестой и седьмой групп периодической системы

ПЯТАЯ БЕСЕДА. ПЕРИОДИЧЕСКИЙ ЗАКОН И АТОМИСТИКА МЕНДЕЛЕЕВА

Периодическая система элементов Менделеева пятая группа

Пятая главная подгруппа периодической системы

Пятая группа периодической системы

Пятая группа периодической системы (Главная подгруппа)

Пятая группа периодической системы. Элементы главной подгруппы

Пятая группа периодической системы. Элементы подгруппы ванадия

Пятая группа элементов периодической системы

Пятая лекция. Почти-периодические функции. Сложение взаимно перпендикулярных гармонических колебаний одинакового периода Сложение взаимно перпендикулярных колебаний, имеющих различные периоды. Соизмеримость и несоизмеримость периодов. Радиоприем посредством биений44. Роль нелинейности. Детекторы Выпрямление. Образование разностного тона. Некоторые методы экспериментального исследования колебаний

Пятая лекция. Уравнение, сходное с уравнением Шредингера Периодические краевые условия. Собственные чнсла оператора Основные свойства собственных чисел задачи Штурма—Лиувилля Вопрос о разложимости функции в ряд по собственным функциям задачи Штурма—Лиувилля. Вопрос сходимости

Семьдесят пять лет периодического

Семьдесят пять лет периодического закона Менделеева

Четвертая и пятая группы периодической системы. Углерод и кремний

Элементы четвертой, пятой, шестой, седьмой и восьмой групп периодической системы



© 2025 chem21.info Реклама на сайте