Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Валентность электронная, теория

    Можно ли применить подобные рассуждения к молекулам Да, можно, причем двояко. Во-первых, из спектроскопии известно, что характеристические частоты электронов в молекулярных системах лежат в видимой и ультрафиолетовой областях спектра, тогда как частоты колебаний ядер — в инфракрасной области, так что (oj / u ) 100 и критерий адиабатичности для молекул выполняется (правда, как мы увидим далее, — не всегда). Во-вторых, слоистое строение электронных оболочек атомов и молекул позволяет разделить электроны на группы в зависимости от скорости их движения, так как периоды движения оптических (валентных) электронов и электронов остова существенно различаются. В настоящее время адиабатическое разделение быстрых и медленных электронов применяется главным образом в теории атомов, и мы о нем в дальнейшем говорить не будем, сосредоточив внимание на адиабатическом разделении электронных и ядерных движений. [c.109]


    Рассмотрение молекулярных орбиталей и химической связи во втором издании в общем понравилось большинству преподавателей, но показалось им несколько усложненным и трудным для восприятия. Теперь мы разбили этот материал на две части в гл. 12 излагаются основы теории молекулярных орбиталей и ее применения к некоторым двухатомным молекулам, а в гл. 13 рассматриваются многоатомные молекулы и молекулярная спектроскопия. Кроме того, написана новая глава (гл. 11), представляющая собой введение в теорию химической связи в ней используются только представления об электронных парах и отталкивании электронных пар и еще не упоминается о квантовой механике. Рассматриваемая в этой главе теория отталкивания валентных электронных пар (как это ни странно, мало известная в США) дает интуитивно понятный и простой способ качественного объяснения формы молекул. Эти три главы вместе с гл. 14, посвященной химической связи в кристаллах и жидкостях, дают студентам всестороннее представление о принципах химической связи, строения молекул и спектроскопии. [c.10]

    Ионизация электролитов при растворении. Причины электролитической диссоциации. Несмотря на хорошее согласие многих выводов с фактами, гипотеза электролитической диссоциации долгое время не получала общего признания. Главной причиной этого было то, что на основе представлений об атома.х как о неделимых частицах, которое было общепринятым в прошлом веке, нельзя было понять причину и сущность этого явления, нельзя было понять, почему свойства нейтрального атома и получающегося из него иона могут так резко различаться. Лишь в результате развития электронных теорий валентности было установлено, что электронная структура, а следовательно, и свойства иона и нейтрального атома различны. Для нас теперь естественно, что ион натрия не обладает теми же свойствами, которые присущи нейтральному атому его. Мы знаем, что химические свойства атома натрия обусловливаются наличием в нем одного слабо связанного электрона и что в ионе натрия такого электрона уже нет. [c.383]

    Можно предполагать, что пути к изучению законов непрерывности химического изменения (несомненно, в единство с дискретностью) будут проходить через представления о волновых свойствах и, следовательно, о делокализации валентных электронов (теория молекулярных орбит) и об участии обобщенных электронов в валентном взаимодействии (электронная теория катализатора). [c.119]


    Кристаллы неметаллических элементов с каркасной структурой, подобные углероду или кремнию, обладают свойствами диэлектриков (изоляторов), т.е. не проводят электрический ток. Применение теории молекулярных орбиталей к обсуждению химической связи в неметаллических каркасных кристаллах сталкивается со значительными трудностями. Достаточно сказать, что в ковалентных каркасных кристаллах обычно удается вести подсчет валентных электронов вокруг каждого атома, подобно тому как это делается при составлении льюисовых структур, и оказывается, что при этом выполняется правило октета. Это объясняется тем, что атомы в неметаллических каркасных кристаллах обычно имеют по крайней мере столько валентных электронов, сколько у них есть валентных орбиталей. Следовательно, в таких кристаллах предпочтительны низкие координационные числа, и между каждым атомом и его ближайшими соседями могут образовываться простые двухэлектронные связи. Низкие координационные числа являются причиной того, что потенциальная энергия электрона внутри таких кристаллов не постоянна она значительно понижается в межъядерных областях, и поэтому электроны не могут свободно перемещаться по кристаллу, подобно тому как это происходит в металлах. [c.629]

    Благодаря электронным теориям уточнились старые химические понятия о валентности. Электронные теории ввели в игру электронную оболочку атома. Валентные схемы строятся с учетом способности атомов образовывать электронные пары. Разумеется, они строятся на основании эмпирических данных, но при этом обращается внимание на количество электронов в атоме, на наличие неспаренных электронов, на подразделение электронов на внутренние и внешние, на более частные правила, в том числе на правило электронного октета и т. д. [c.44]

    Резюмируя содержание последних двух параграфов, мы можем сказать, что выводы из квантовой механики подтверждаются всем разнообразным экспериментальным материалом, который подтверждал и теорию Бора. Вместе с тем, квантовая механика не обладает теми внутренними затруднениями логического характера, которые были свойственны теории Бора. За пределами этой теории по-прежнему остается тонкая структура линий водорода и сходных с ним ионов. В дальнейшем мы увидим, что тонкая структура объясняется, если принять гипотезу о наличии собственного магнитного момента у электронов. Но главные успехи квантовой механики относятся к теории атомов с несколькими валентными электронами. Теория Бора даже в простейшем случае многоэлектронной системы — в случае атома гелия и сходных с ним ионов—давала неверные значения энергий стационарных состояний. Квантовая механика позволяет вычислить для гелия эти энергии, которые находятся в очень хорошем согласии с экспериментальными данными. [c.108]

    Молекулярные частицы ВО, СЫ и СО образуют изоэлектронный ряд с 9 валентными электронами. Согласно теории молекулярных орбита- [c.538]

    Объяснение ароматичности было впервые. дано Хюккелем на основе теории молекулярных орбиталей. Единая система из 30 валентных электронов бензола приближенно подразделяется по симметрии на систему а- и л-электронов Ядра молекулы образуют плоский ске- [c.115]

    Если электропроводность объясняется перезарядкой ионов, зонная теория полупроводников, по-видимому, в простейшем виде неприменима не происходит полного вырождения уровней валентных электронов в отдельных ионах, а сохраняется периодичность в энергетическом спектре валентных электронов кристалла. Катионы решетки находятся в потенциальной яме, так что переход электрона от катиона к катиону требует энергии активации, а длина свободного пробега электрона соответствует междуатомным расстояниям в кристаллической решетке. В таком случае энергия активации определяется не только параметрами атома, образующего катион (т. е. в конечном счете его положением в таблице Менделеева), но и межатомными расстояниями в кристалле, что указывает на значение геометрических параметров кристалла в отношении его каталитической активности. [c.29]

    В наше время, на основе представлений электронной теории валентности, зависимость состояния и свойств данного атома от природы связанных с ним атомов является очевидной. Состояние атома хлора и свойства его неодинаковы в молекулах хлористого водорода или хлористого натрия или хлороформа. [c.70]

    Современная электронная теория валентности и электронная формула придают простой и двойной связя.м в формуле бензола Кекуле реальный физический смысл. [c.471]

    На основе электронной теории валентности стали понятными и физические причины самого явления электролитической диссоциации. [c.383]

    В этом случае р-орбиталь реагента частично перекрывается с двумя р -орбиталями я-связи субстрата (перекрывание р -орбитали реагента в большей степени происходит с валентными электронами атома В, с которым атом А химически связан). С позиций теории валентных связей я-комплекс является суперпозицией следующих трех резонансных форм  [c.169]


    В последнее время была предложена цепная теория катализа (Семенов, Воеводский), согласно которой катализатор, обладая свободными валентностями, может действовать как свободный радикал, возбуждая образование цепей и участвуя в их развитии. Цепную теорию катализа можно рассматривать как распространение электронной теории катализа на полупроводниках (и металлах) на класс цепных реакций. [c.460]

    В-третьих, для быстрого протекания каталитических реакций нужно, чтобы катализатор уменьшал энергию активации реакции. Это особенно важно для гомолитических (окислительно-восстановительных) реакций, в которых роль катализатора заключается главным образом в снижении энергии активации при образовании радикалов с разрывом электронной пары. Такими катализаторами будут вещества, имеющие свободные валентности и, следовательно, являющиеся проводниками тока (металлы, полупроводники). Небольшие добавки, повышающие радикальный характер катализатора, будут облегчать переход электронов с катализатора на реагирующее вещество и понижать энергию активации при образовании радикалов на поверхности катализатора. Теоретические основы для выбора втих добавок дает электронная теория. [c.462]

    По теории Берка (10), относящейся к первой группе теорий, при термическом распаде молекул углеводорода никаких промежуточных нестабильных соединений не образуется. Первичным актом ири термическом превращении парафинового углеводорода является, по Берку, накопление при одном углеродном атоме двух валентных электронов. Атом углерода, получивший отрицательный заряд, перетягивает к себе атом водорода от соседнего углеродного атома, после чего молекула парафинового углеводорода непосредственно распадается на молекулу парафина меньшего размера и молекулу олефина. [c.20]

    Молекула олефина состоит в общем случае из этиленовой группировки и двух алкильных радикалов В СН=СН Двойная связь не только сама способна к различным реакциям, но и оказывает значительное влияние на прочность различных связей в алкильных радикалах, что подробно разобрал Шмидт (210) в своем Правиле двойной связи , исходя из основных положений электронной теории валентности. [c.107]

    Приведенный обзор показывает, что ионы МпО устойчивее ионов МПО4. Этот факт в рамках теории молекулярных орбиталей (см. с. 516) можно объяснить следующим образом. Ион МпО содержит 24 валентных электрона 7 электронов атома Mn(3d 4s ), 16 электронов четырех атомов О (2р ) и 1 электрон на счет заряда иона. Ион МпО , имеющий заряд на единицу больше, содержит уже 25 электронов. Распределение валентных электронов по молекулярным орбиталям ионов МпО и МпО соответствует следующим электронным конфигурациям  [c.579]

    В тех случаях, когда материалом подложки являются аморфные атомные вещества, обладающие локализованными валентными электронами и по ти являющиеся огромными макромолекулами, материал подложки неспособен выступать по отношению к парафиновым частицам в качестве донора электронов и между ними могут существовать лишь ван-дер-ваальсовые взаимодействия. В таких случаях механизм вытекает из адсорбционной теории адгезии. [c.110]

    В молекулах или в кристаллах соединений с и о и н о й связью содержатся не нейтральные атомы элементов, а их ионы, и, например, хлористый натрий состоит из ионов Na+ и С " не только в водных растворах, но и в любом его состоянии. Из этих ионов состоят, в частности, и кристалл поваренной соли и молекулы Na l в парах. Таким образом, в отношении ионных соединений развитие электронной теории валентности избавило гипотезу электролитической диссоциации от задачи объяснить процесс образования ионов, так как при растворении такого электролита происходит лишь разъединение ионов, а не образование их. Переход ионов в раствор происходит в результате взаимодействия их с молекулами растворителя, в результате образования связей между ионом и молекулами растворителя (сольватация ионов) и, в частном случае, молекулами воды (гидратация ионов). [c.383]

    Аналогично Н. Н. Семенов трактует и другие органические реакции (гидрирование, синтез углеводородов и спиртов из СО и Н , крекинг). Электронная теория Волькенштейна и цепная теория Семенова в основном имеют много общего, допуская при реакциях роль свободных поверхностных валентностей и свободных радикалов. В работе Ф. Ф. Волькенштейна, В. В. Воеводского и Н. Н. Семенова [69] приводится, что ...сложные превращения молекул на поверхности катализаторов протекают в результате последовательных реакций простых свободных радикалов . В гетерогенном цепном превращении возможны два основных пути  [c.165]

    Однако применение законов кинетической теории газа к электронному газу приводит к значению а, отличающемуся от эксперимента. Делокализация валентных электронов-в кристаллической решетке металла, а следовательно, отсутствие в ней направленных валентных связей объясняет тот факт, что металлы имеют большое координационное число К, плотнейшую сферическую упаковку, а также чаще всего кубическую объемно-центрированную элементарную ячейку решетки. Некоторые металлы могут кристаллизоваться в различных типах решеток например, при температуре <768 °С магнитное -железо имеет /( = 8, а при температуре >906 °С устойчивым является немагнитное у-железо с /С=12. Впрочем, для некоторых тяжелых металлов наряду с металлической связью, образованной З -электронами, реализуются слабые ковалентные связи между атомами, в то время как 45-электроны образуют электронный газ. Для такой смешанной металлической и межатомной связи характерно образование пар электронов как с параллельными, так и с антипараллельными спинами (для марганца— антипараллельные, для железа — параллельные). Этим объясняется различие в магнитных свойствах металлов параллельные спины обусловливают ферромагнетизм, т. е. положительная магнитная восприимчивость на два или три порядка [c.138]

    Решение. Атом брома имеет семь валентных электронов. При образовании простых связей между атомом брома и тремя атомами фтора последние поставляют в валентную оболочку молекулы еще три электрона. Согласно теории [c.295]

    Происхождение и величину градиентов электрических полей на ядрах атомов в молекулах приближенно объясняют с точки зрения характера химических связей и распределения электронной плотности в рамках теории МО ЛКАО. В молекулярных кристаллах основной вклад в градиент поля на ядре дают валентные электроны рассматриваемого атома, а в простейшем подходе Таунса и Дейли для таких атомов, как и галогены, показывается, что градиент создают главным образом р-электроны валентной оболочки. Исходное положение этого подхода состоит в том, что градиент электрического поля в направлении г (например, совпадающем с направлением связи, см. рис. IV.2) в молекуле е мол можно выразить через градиент электрического поля в свободном атоме е<7ат в виде линейного соотношения  [c.105]

    Однако представления теории резонанса применимы не только в органической химии. Основываясь на старых представлениях, нельзя, в частности, четко объяснить строение молекул бороводо-родов. У атома бора слишком мало валентных электронов, чтобы образовалось требуемое число связей. Если же принять, что электроны соответствующим образом размазаны , то можно предложить приемлемую структуру молекул. [c.163]

    Ионные кристаллы. В кристалле хлорида натрия (рис. 75, а) валентные электроны атомов Na (3s ) и l (3s 3p ) заполняют валентную энергетическую зону Зр. В представлении теории ионной связи это отвечает переходу электронов от атомов Na к атомам С и образованию ионов Na+ и СГ. Поскольку энергетическое различие между валентной Зр-зоной и свободной 35-зоной велико (Af 6 эВ), в обычных условиях Na l электронной проводимостью не обладает. [c.117]

    В рамках теории молекулярных орбиталей рассмотренная модель молекулы воды соответствует распределению восьми валентных электронов по двум связывающим и двум несвязывающим молекулярным орбиталям [c.311]

    Трпмотилбор представляет собой плоскостную молекулу [195], содержащую только шесть валентных электронов. Они использованы для образонания 1 рех связей с тремя метильными группами. Теория предсказывает, что атом бора в этой молекуле для образования трех связей использует гнбридизованные орбиты Следовательно, остается свободная орбита 2р, которая еще не используется . [c.394]

    Высшие интергалогенные соединения имеют формулы ХХ3, ХХ5 или XX,, где Х -хлор, бром или иод, а Х -фтор (единственным исключением является 1С1з, в котором Х -хлор). Из проведенного в разд. 7.7, ч. 1, обсуждения химической связи и структуры следует, что соединения такого типа образуются с участием надвалентных орбиталей центрального атома. Пользуясь теорией отталкивания валентных электронных пар (ОВЭП), изложенной в разд. 8.1, ч. 1, можно предсказать геометрическое строение таких соединений. Характер химической связи между центральным и периферическими атомами в интергалогенных соединениях можно описать и в рамках представлений [c.295]

    Теоретический материал по ковалентной связи теперь помещен в Трех главах, куда вошли также дополнительные сведения по теории отталкивания валентных электронных пар (ОВЭП) и по молекулярной спектроскопии. Изложение в этих главах также последовательное и позволяет преподавателю при необходимости без особых затруднений использовать курс в ограниченном объеме. [c.567]

    Наличие свободной валентности на поверхности является, с точки зрения электронной теории, необходимым, хотя и не всегда достаточным условием протекания реакции в адсорбционном слое. Согласно этой теории, в реакции участвуют не все хемосорбированные частицы, а только те, которые находятся в реакционноспособном состоянир , определяемом для данной реакции ее механизмом, Поэтому скорость реакции определяется при прочих равных условиях относительным содержанием среди хемосорбированных молекул активной для данной реакции формы. Волькенштейн, а затем Гарсиа де ля Банда [20] показали, что при установившемся электронном равновесии относительные содержания различных форм хемосорбированных частиц, а следовательно, и скорость каталитической реакции, связанной с концентрацией реакционноспособных форм, зависят от положения уровня Ферми, энергетического интервала между валентной [c.23]

    Очевидно, Сг = С4 = Сд, т.е. в (1.52) входят лишь два значения коэффициентов. Правда, энергия электронных состояний, отвечающих структурам (3), (4) И (5), выше чем структур (1) н (2) (так как в структурах Дюара одна из я-связей слабее остальных). Поэтому их вклад в величину ф будет меньше, чем вклад первых двух структур. Это означает, что в первом приближении можно не принимать во вннмаиме фз, ф< и фд, ограничиваясь Ф1 и фа. Подобный метод объяснения и расчета химической связи в молекулах получил назв.ание метода на-ложения валентных схем теории резонанса). В этом методе используют волновые функции вида [c.94]

    Теория поглощения света не будет здесь рассмотрена более подробно, так как ее можно трактовать только с помощью квантовой теории и волновой механики. Однако в качестве рабочей гипотезы и для понимания этого явления химиком-органиком можно с успехом использовать теорию мезомерии. В соответствии с этой теорией красителем является ненасыщенное соединение, которое можно описать с помощью ряда мезомерных предельных структур. Поглощая световую энергию, непрочно связанные валентные электроны переходят на более высокий энергетический уровень, н, таким образом, молекула красителя переходит в возбужденное состояние. Чем большее число мезомерных структур участвует в основном состоянии, тем легче обычно происходит возбуждение молекулы и тем глубже окрашено соединение. В соответствии с этим все окрашенные вещества должны были бы быть неустойчивыми. Однако благодаря тому, что ненасыщенные группы, введенные в ароматические и хииоидные системы, могут стабилизоваться, в результате сопряжения и образования водородны.ч связей, химикам удалось получить чрезвычайно устойчивые красители. [c.597]

    Теория кристаллического поля объясняет хорошо известный химикам факт, что поны элементов вставных декад окрашены, в то время как ионы, имеюш,ие конфигурацию благородных газов, бесцветны. В ионах -элементов происходит расщепление энергетических уровней валентных электронов в поле лигандов наоборот, воздействие всех лигандов на 5- или р-орбитали одинаково и в этом случае расщепление уровней отсутствует. Становится также понятным, почему ноны Си+ бесцветны, тогда как ионы Си + окрашены ион Си+ имеет конфигурацию ° в нем заполнены все -орбитали, поэтому переходы электронов с одной -орбитали на другую невозможны, у иона Си + ((1 ) одна -орбиталь свободна. По той же причине бесцветны имеющие электронную конфигурацию ионы Ад- -, Zn +, С3 + и [c.124]

    С появлением электронной теории химической связи представлению о валентности был придан физический смысл. Было постулировано, что каждая связь центрального атома с периферическими осуществляется парой электронов, которая принадлежит обоим связанным атомам и распределяется между ними. Валентность атома в соединении равна числу его электронов, участвующих в связи максимальная валентность равна числу алентных электронов атома. Так, водород одновалентен, так как имеет один валентный электрон, кислород по числу неспаренных электронов двухвалентен, углерод четырехвалентен  [c.78]

    Фридель и, в особенности, Колли и Тикль предложили рассматривать эти аддукты как соединения с ч е т ы р е х в а л е н т и ы м кислородом, строение которых может быть выражено формулой а позднее Вернер предложил для них формулу соединений с побочной валентностью 6. На основании современной электронной теории им следует приписать формулу в. [c.151]

    Химические свойства молекул определяются валентными электронами, число которых, особенно в случае молекул, содержащих атомы тяжелых элементов, составляют лишь небольшую долю общего числа электронов системы. Поэтому желательно задачу расчета молекулы сформулировать так, чтобы в ней рассматривалась только система валентных электронов. Трудность состоит в том, чго надо учитывать не только поле (кулоновское и обменное), создаваемое электронами внутренних оболочек, но и требование ортогональности (в общем случае линейной независимости) орбиталей валентных и внутренних оболочек. Свести задачу расчета всей молекулы к задаче расчета системы валентных электронов можно с помощыо метода псевдопотенциала, который появился в 50-е годы в теории твердого тела и с тех пор бурно развивается . [c.272]

    Обычные или сокращенные структурные формулы алканов не дают представления о трехмерной структуре этих веществ. На основании теории отталкивания валентных электронных пар (ОВЭП см. разд. 8.1. ч. 1) можно предположить, что в алканах каждый атом углерода находится в тетраэдрическом окружении связанных с ним атомов. Другими словами, четыре группы, присоединенные к каждому атому углерода, расположены в верщинах тетраэдра, в центре которого находится данный атом углерода. Для изображения трехмерных структур молекул используются различные способы, продемонстрированные на рис. 24.3 для молекулы метана. Описание химической связи в алканах обычно основывается на представлениях о 5р -гибридизованных орбиталях углерода, как это уже обсуждалось в разд. 8.2, ч. 1. [c.413]


Смотреть страницы где упоминается термин Валентность электронная, теория: [c.23]    [c.350]    [c.424]    [c.181]    [c.108]    [c.47]    [c.220]    [c.247]   
Справочник Химия изд.2 (2000) -- [ c.111 ]




ПОИСК





Смотрите так же термины и статьи:

Валентность теория

Валентные электроны

Теория электронная

Теория электронов

Электроны валентные электроны



© 2025 chem21.info Реклама на сайте