Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Массопередача в адсорбционных процессах. Диффузия

    Динамика ионного обмена описывается системой уравнений статики, кинетики и материального баланса. Однако кинетические модели ионного обмена различны. Процесс может контролироваться внешней или внутренней диффузией, или химической реакцией между ионитом и компонентом раствора. Иногда он зависит от других факторов, например от изменения объема ионита, от диффузионного электрического потенциала, который может возникать, если ионы имеют разные заряды и разные подвижности, и проч. В связи с этим предложено множество кинетических уравнений для разных вариантов механизма процесса. Априорный выбор той или иной кинетической модели, а следовательно, и кинетического уравнения для конкретного ионообменного процесса обычно затруднителен — требуется предварительное экспериментальное исследование. Чаще всего закономерности кинетики ионного обмена в основном тождественны таковым для диффузионных адсорбционных процессов, где массопередача в значительной мере зависит от гидродинамических условий. Вопросы кинетики ионного обмена рассмотрены в монографиях [52, 83а, 107, 145, 180, 181]. [c.309]


    В жидкостно-адсорбционной хроматографии вследствие медленности процессов доставки вещества из объема подвижной фазы (малое значение коэффициента диффузии в жидкости) к поверхности неподвижной фазы (адсорбента) вклад в размывание, обусловленный малой скоростью массопередачи, может быть значительным. Особенно ои возрастает вследствие медленности диффузии в адсорбенте, т. е. определяется внутренней массопередачей. [c.72]

    СТН адсорбции или, как это часто формулируется, устанавливается постоянная скорость движения фронта адсорбционной волны вдоль слоя адсорбента. Следовательно, Lo меньше 22 см, но больше II см. Различие в формах выходных кривых 3 и 4 указывает на то, что изменение скорости фильтрования в этих пределах (0,6—0,4 м м -ч) отражается на скорости адсорбции. Это возможно тогда, когда общая скорость массопередачи в значительной степени лимитируется скоростью внешней диффузии мицелл ПАВ из объема раствора к поверхности зерна адсорбента. В таких условиях, когда общая скорость процесса определяется скоростью внешней диффузии, длина работающего слоя ( о) также должна зависеть от скорости фильтрования (У). Эта зависимость выражается соотношением [c.71]

    Адсорбционные процессы относятся к наиболее сложно описываемым и моделируемым объектам химической технологии в силу того, что требуют в значительной мере более детального подхода к формированию модели в связи с. многообразием кинетических факторов, сопровождающих диффузию сорбата в макро-, мезо- и микропорах сорбента и необходимостью учета как специфических характеристик самого сорбента (например, состав и свойства активных центров, условия регенерации), так и особенностей взаимодействия в конкретной системе адсорбент - адсорбат и на стадии адсорбции, и на стадии регенерации. В связи с этим представляет интерес феноменологическая модель адсорбционного процесса в виде длины зоны массопередачи Lo. Зона массопередачи участок длины (высоты) слоя сорбента, в котором и протекает собственно сорбционный процесс с интегральным учетом всех его реалий, перемещающийся по длине слоя от начала к концу процесса в неподвижном слое сорбента и равный необходи юй высоте слоя в процессах в движущемся или псевдо-ожиженном слоях сорбента. [c.30]

    В фаницах задачи получения глубскоочищенных жидких парафинов с содержанием примеси ароматических углеводородов не более 0.01 % масс, бьши детально изучены особенности кинетики жидкофазной адсорбции углеводородов н-гексана и н-гептана из растворов в бензоле цеолитами СаА, сорбция бензола, толуола, параксилола и изопропил-бензола цеолитами NaX и сорбция бензола из растворов в н-гептане, н-гептене, циклогексане, изооктане и тридекане цеолитами NaX в диапазоне концентраций адсорбируемого компонента в растворе 2-70 % об. при температурах 5-60 С. Расчетный анализ кинетики сорбции свидетельствует, что для рассмотренных систем адсорбционный процесс характеризуется близкими значениями диффузионного сопротивления в кристаллах сорбента и транспортных порах. Зависимость эффективных коэффициентов диффузии адсорбируемых компонентов в цеолитах от времени контакта раствора t с сорбентом при сорбции из растворов носит специфический экстремальный характер (рис. 1) на начальной стадии процесса, не свойственный, например, сорбции из паров, и объясняемый фактической трехфазностью исследуемых систем. Выявлена аномальность сорбции из растворов при повыщенных температурах вместо падения активности цеолитов наблюдался ее рост с одновременным ростом общего объемного коэффициента массопередачи, который может быть рассчитан как величина, обратная первому статистическому моменту кинетической кривой, интерпретируемой как функция отклика адсорбента на ввод в систему навески разделяемого сырья. [c.22]


    Для практического осуществления адсорбционных процессов и в частности для хроматографического разделения смесей важное значение имеет степень размывания фронта концентраций (хроматографических полос). Как известно, это размывание может быть связано как с медленностью процессов массопередачи (внешней и внутренней диффузии), так и с продольным перемешиванием. Оценка относительной роли каждого из этих эффектов необходима для выбора оптимальных условий проведения процесса и рационального подбора адсорбента. Наиболее полно и правильно такая оценка может быть сделана на основании данных, характеризующих в отдельности различные виды массоперено-са в слое сорбента. До последнего времени исследовались, главным образом, процессы внешней и продольной диффузии. Накопленный к настоящему времени материал по внешней и продольной диффузии позволяет характеризовать различные системы, независимо от их конкретных свойств, так как установленные в этой области закономерности имеют общее значение [1]. В противоположность этому внутреннедиффузионная стадия процессов сорбции изучена совершенно недостаточно как в отношении обших закономерностей, характеризующих данный процесс, так и в отношении накопления конкретного экспериментального материала. Недостаток такого рода данных особенно ощущается в связи с тем, что внутреннедиффузионные процессы в последнее время приобретают все большее значение. Результаты исследования внутреннедиффузионной стадии кинетики вместе с полученными ранее данными по внешней и продольной диффузии позволят охарактеризовать весь процесс в целом и сформулировать требования к адсорбенту, важные как для выбора оптимальных условий проведения процессов разделения, так и для усовершенствования технологии получения сорбентов. [c.274]

    Для расчета параметров адсорбционных аппаратов большой интерес представляет протекание процесса адсорбции во времени. В большинстве случаев — независимо от механизмов диффузии, описанных выше,— исследуется только общая зависимость снижения концентрации от времени и влияние рабочих параметров динамического процесса. Основой для решения этой задачи применительно к жидкой и газовой фазам служит модель длины неиспользованного слоя (модель LUB — Lange des unbenutzten Bettes), впервые предложенная Коллинзом [18]. В соответствии с этой моделью (рис. 3.9) слой активного угля делится на 3 части в первой части, на входе в слой, имеет место равновесная адсорбция, т. е. достигается максимальное насыщение в равновесии с исходной концентрацией Со. Далее, в направлении потока за ней непосредственно следует так называемая зона массопередачи (MUZ) замыкает слой последняя, еще не насыщенная адсорбтивом часть. Харак- [c.31]

    В случае нелинейных изотерм адсорбции при анализе процесса газо-адсорбционной хроматографии возникают су щественные трудности, связанные с решением соответствую щих уравнений в частных производных. Получить аналитиче ские решения в большинстве случаев невозможно. Поэтому иногда используют приближенные или асимптотические ре шения, а чаще всего задача решается численными методам на вычислительных машинах. При этом даже в последнем случае не удается учесть все факторы, влияющие на размытие хро.матографической полосы. Так, в работе [57] рассмотрена задача дицамики адсорбции или фронтальной хроматографии для изотермы адсорбции Фрейндлиха в случае, когда лимитирует скорость массопередачи. Процессами внешней и внутренней диффузии пренебрегали. [c.158]


Смотреть страницы где упоминается термин Массопередача в адсорбционных процессах. Диффузия: [c.126]    [c.111]   
Смотреть главы в:

Активные угли и их промышленное применение -> Массопередача в адсорбционных процессах. Диффузия




ПОИСК





Смотрите так же термины и статьи:

Массопередача

Массопередача массопередачи

Процесс диффузии



© 2025 chem21.info Реклама на сайте