Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мочевина биосинтез

    Расщепление аргинина с образованием орнитина переводит путь-биосинтеза аргинина в цикл синтеза мочевины. Этот цикл присущ только организмам, экскретирующим азотистые шлаки в виде мочевины,., тогда как путь, ведущий к биосинтезу аргинина, используется почти всеми организмами. [c.98]

    Образование мочевины в О.ц. характерно для т.наз. уреотелических животных. Путь биосинтеза аргинина, подобный тому как происходит в О. ц., присущ почти всем живым организмам. Р-ции I и II в О. ц. осуществляются в матриксе митохондрий, остальные р-ции-в цитозоле. [c.410]


    У жвачных животных значит, часть мочевины поступает из крови в рубец, где она используется микрофлорой для биосинтеза аминокислот, к-рые поступают в кровь животного. Без участия микроорганизмов эти животные ис способны утилизировать своб. мочевину. Такой процесс избавляет верблюда от потерь воды, неизбежных при выделении мочевины с мочой. [c.410]

    У. играет важную роль в круговороте Nj в природе, разлагая выделяемую животными мочевину на Oj и NH3. Последний используется почвенными бактериями для биосинтеза белка. [c.46]

    Для птиц незаменимой аминокислотой является глицин. У жвачных животных биосинтез всех НАК производится микроорганизмами кишечного тракта, при зтом необходимы в достаточном количестве соединения азота (аммонийные соли, мочевина). Для человека обеспечение организма НАК — важнейшая задача питания. Высокую биологическую ценность имеют лишь немногие животные белки, такие, как белок куриного яйца или белок материнского молока. Они содержат НАК не только в достаточном количестве, но и в необходимом для человека соотношении. Низкая ценность многочисленных растительных белков связана с небольшим содержанием в них отдельных незаменимых аминокислот (главным образом лизина и метионина). Важными компонентами смешанного корма являются рыбная и соевая мука. В белке соевой муки и в белке кормовых дрожжей мало метионина, в кукурузе — лизина и триптофана. Дефицит может компенсироваться добавлением недостающей аминокислоты илн подходящей комбинацией других белков. [c.19]

    Интерес к изучению биосинтеза природных веществ развивался параллельно с накоплением данных по их строению. Уже в самых ранних работах (например, в классическом синтезе Велером в 1828 г. мочевины — хорошо известного продукта метаболизма животных — путем пиролитической перегруппировки цианата аммония) было показано, что в принципе природные соединения образуются в результате обычных химических реакций. Это важное открытие развеяло окружавший природные соединения миф об их сверхъестественном происхождении с помощью некоей жизненной силы. Виталистическая концепция была окончательно развеяна Пастером, который в середине прошлого столетия показал,, что микроорганизмы, в том числе бактерии и дрожжи, не возникают самопроизвольно из ничего, и что они ответственны за образование таких известных продуктов брожения, как спирт, уксусная и масляная кислоты. [c.341]


    Основным механизмом обезвреживания аммиака в организме является биосинтез мочевины. Последняя выводится с мочой в качестве главного конечного продукта белкового, соответственно аминокислотного, обмена. На долю мочевины приходится до 80—85% от всего азота мочи. Основным [c.448]

    Учитывая известные фактические данные о механизмах обезвреживания аммиака в организме, можно сделать следующее заключение. Часть аммиака используется на биосинтез аминокислот путем восстановительного аминирования а-кетокислот по механизму реакции трансаминирования. Аммиак связывается при биосинтезе глутамина и аспарагина. Некоторое количество аммиака выводится с мочой в виде аммонийных солей. В форме креатинина, который образуется из креатина и креатинфосфата, выделяется из организма значительная часть азота аминокислот. Наибольшее количество аммиака расходуется на синтез мочевины, которая выводится [c.450]

    Донорами атомов азота в молекуле мочевины в процессе ее биосинтеза в организме являются  [c.597]

    С хорошо раств. в воде, не раств. в сп., метаноле. В белки пе включается, Играет важную роль в обмене. Биосинтез — из орпитииа и карбамоил фосфата. Участвует в цикле мочевины. [c.688]

    Пятиуглеродный скелет глутаминовой кислоты непосредственно дает начало пролину, орнитину и аргинину. Соответствующие реакции показаны на рис. 14-2. Аргинин в свою очередь участвует в цикле мочевины (рис. 14-4) и является предшественником в биосинтезе полиаминов. [c.95]

    РИС. 14-4. Биосинтез цитруллина, аргинина и мочевины. Сплошными стрелками указаны реакции, непосредственно связанные с дезаминированием аминокислот и синтезом [c.95]

    Если аминогруппа блокируется ацетилированием (рис. 14-2, стадия 2) до восстановления глутамата в полуальдегид, то циклизация предотвращается. у Альдегидная группа путем переаминирования может быть переведена в аминогруппу, и удаление блокирующей ацетильной группы приводит к образованию орнитина >. Последний в результате реакций, приведенных на рис. 14-4, превращается в аргинин. Эти реакции не только обеспечивают пути биосинтеза аргинина, протекающие во всех организмах, но обеспечивают также синтез мочевины, главного конечного азотистого продукта у млекопитающих и ряда других организмов. Интересная особенность замечена у нейроспоры когда она растет на минимальной среде, в ее клетках накапливаются большие количества орнитина и аргинина, из которых свыше 98% заключены в плавающие в цитоплазме пузырьки [ЗЗЬ]. [c.96]

    Катаболизм белков у всех организмов начинается с их расщепления по пептидным связям протеолитич. ферментами. В желудочно-кишечном тракте животных белки гидролизуются трипсином, химотрипсином, пепсином и др. ментами до своб. аминокислот, к-рые всасываются стенками кишечника и попадают в кровоток. Часть аминокислот подвергается дезаминированию до оксокислот, претерпевающих дальнейшее расщепление, др. часть используется печенью или тканями организма для биосинтеза белков. У млекопитающих отщепляющийся от аминокислот аммиак превращ. в орнитиновом х икле в мочевину. Этот процесс осуществляется в печени. Образующаяся мочевина вместе с др. р-римыми продуктами О.в. выводится из кровотока почками. [c.315]

    L-0.-заменимая некодируемая аминокислота, в организме играет важную роль, особенно в биосинтезе мочевины (см. Орнитиновый цикл) его метаболизм тесно связан с пролином и оксипролином. В организме О. образуется при гидролизе аргинина, восстановит, аминировании 2-амино-4-формилмасляной к-ты (прод>тгга восстановления глутаминовой к-ты) при окислит, отщеплении 5-аминогруппы О. может переходить в пролин. [c.409]

    В общей сложности на образование каждой молекулы мочевииы в организме расходуется 4 молекулы АТФ. Около 15% энергетической ценности аминокислот, участвующих в биосинтезе мочевины, расходуется на ее биосинтез. [c.410]

    Являясь конечным продуктом белкового обмена в живых организмах, мочевина активно участвует в регуляции их водного режима. Наличие такой "обратной связи" индуцируется протеканием процесса биосинтеза мочевины (из NH3 и СО2 в БЛВС печени) по замкнутому, так называемому орнитиновому циклу, состоящему из последовательного ряда ферментативных реакций [2]. [c.110]

    Третий пример взаимосвязи процессов метаболизма - общие конечные пути. Такими путями для распада всех биомолекул являются цикл лимонной кислоты (цикл Кребса) и дыхательная цепь. Эти процессы используются для координации метаболических реакций на различных уровнях. Так, цикл лимонной кислоты является источником СО2 для реакций карбоксилирования, с которых начинается биосинтез жирных кислот и глюкогенез, а также образование пуриновых и пиримидиновых оснований и мочевины. Взаимосвязь между углеводным и белковым обменом достигается через промежуточные метаболиты цикла Кребса а-кетоглутарат и глутамат, оксалоацетат и аспартат. Ацетил-КоА прямо участвует в биосинтезе жирных кислот и в других реакциях анаболизма, а в этих процессах связующими конечными путями выступают реакции энергетического обеспечения с использованием НАДН, НАДФН и АТФ. Важно подчеркнуть, что главным фактором для нормального обмена веществ и протекания нормальной жизнедеятельности является поддержание стационарного состояния. [c.120]


    Для приготовления питательных сред в микробиологической промышленности используют сырье минеральное, животного и растительного происхождения, а также синтезированное химическим путем. Эти веш,ества, входя в состав питательной среды, обеспечивают развитие культуры и биосинтез определенных продуктов. Они не должны содержать вредных примесей. При выборе сырья необходимо учитывать его влияние на себестоимость, так как в микробиологическом синтезе важное значение имеет стоимость исходных веществ и материалов. В качестве источников углерода чаще всего используют углеводы (глюкоза, сахароза, крахмал, лактоза) или богатые углеводами натуральные продукты (меласса, кукурузная мука, гидроль и др.), а также жиры и даже вещества, содержащие углеводороды (нефть, парафин, керосин, природный газ, метан и др.). Источником азота обычно бывают неорганические соли — сульфат аммония, двузамещенный фосфат аммония, аммиак, нитраты, а также мочевина или натуральные продукты — кукурузный экстракт, соевая мука, дрожжевой автолизат и т. д. [c.75]

    Через 24 ч в культуральную жидкость добавляют антраниловую кислоту в виде 5%-ного спиртового раствора и мочевину в виде 50%-ного раствора. После внесения антраниловой кислоты начинается вторая стадия ферментации — биосинтез Ь-трипто-фана. Уровень аэрации снижается до 3—4 г 02/(л-ч). После добавления в среду антраниловой кислоты и мочевины через [c.167]

    Количественному учету при белковой недостаточности в основном поддаются нарушения, связанные с обменом аминокислот. Одним из наиболее ранних нарушений азотистого обмена при белковой недостаточности является резкое снижение интенсивности процессов дезаминирования, трансаминирования и биосинтеза аминокислот, а также синтеза мочевины в печени. Оказалось, что эти нарушения обусловлены недостаточным синтезом и разрушением белковой части ферментов, катализи- [c.465]

    Спустя 30 лет Г. Кребс и К. Гензелайт вывели уравнение реакции синтеза мочевины и предположили существование циклического процесса, в котором орнитин, образующийся при распаде аргинина, вновь регенерируется в аргинин. Дальнейщие исследования подтвердили циклический характер механизма биосинтеза мочевины. Впоследствии были детализированы отдельные реакции цикла, ферментные системы, энергетика и регуляция этого процесса. Так был окончательно расшифрован знаменитый цикл синтеза мочевины, получивший название орнитинового цикла Кребса—Гензелайта. [c.391]

    Методом П. получ. полиэфиры (напр., полиэтилентере-фталат), полиамиды, полиуретаны, поликарбонаты, поли-арилаты, полигегероарилены, феноло- и мочевино-формальд. смолы и др. П. лежит в основе биосинтеза белков, целлюлозы, нуклеиновых к-т и др. См. также Дегидрополи-конденсация, Межфазная поликонденсация, Поликонденсация в расплаве, Поликонденсация в растворе. Полиприсоединение. [c.461]

    Показано, что при хроматографии олигонуклеотидов на сефадексах G-25, G-50, G-75 и G-100 в 0,5 М бикарбонате аммония (pH 8,6), содержащем 8 М мочевину, компоненты разделяются в соответствии с длиной цепи [97]. Благодаря присутствию мочевины в этом случае удается исключить влияние пуриновых оснований на результаты разделения. Широкий круг сорбентов (сефадекс, биогель, ОЕАЕ-целлюлозу, гидроксиапатит) использовали при изучении биосинтеза олигодезоксирибонуклеотидов. в клетках млекопитающих методом импульсной метки (118]. [c.58]

    Спустя полстолетия после того, как классические исследования строения в результате опытов Фишера были доведены до успешного завершения, некоторые реакции расщепления, на которых было основано установление структуры, нашли новое использование при выяснении путей биосинтеза мочевой кислоты. Среди продуктов реакций расщепления, изображенных выше, имеются мочевина, глицин, двуокись углерода и глиоксиловая кислота, и поэтому кажется вполне вероятным, что эти вещества являются предшественниками мочевой кислоты, т. е. что из них строятся некоторые части ее молекулы. Вопрос о том, действительно ли данное вещество является биогенетическим предшественником, может быть решен путем синтеза этого вещества в моченной изотопами форме и введения его в организм животного (опыты с мочевой кислотой проводились на голубях и на людях). Биосинтетическую мочевую кислоту затем выделяли из мочи и подвергали расщеплению, з результате чего обнаруживали положения, в которых находились меченые атомы. Если после введения изотопно-меченого карбоната биосинтетическую мочевую кислоту окислить до аллантоина, то изотоп обнаружится в образующейся двуокиси углерода, из чего можно заключить, что метка находилась на углероде 6. В отличие от этого, при применении меченой муравьиной кислоты образуется вещество, которое при окислении двуокисью свинца выделяет лишь неизотопную двуокись углерода. Однако при окислении этого же образца мочевой кислоты азотной кислотой обнаруживается, что меченый углерод муравьиной кислоты входит в другие положения молекулы. Из мочевины, образовавшейся как при окислении мочевой кислоты, так и при гидролизе аллоксана, в результате обработки энзимом уреазой получается наряду с аммиаком изотопная двуокись углерода, что указывает на то, что углероды 2 и 8 происходят из муравьиной кислоты. [c.629]


Смотреть страницы где упоминается термин Мочевина биосинтез: [c.57]    [c.57]    [c.212]    [c.183]    [c.277]    [c.54]    [c.151]    [c.461]    [c.209]    [c.316]    [c.95]    [c.46]    [c.168]    [c.448]    [c.390]    [c.389]    [c.391]    [c.522]    [c.574]    [c.151]    [c.688]    [c.94]    [c.84]   
Биологическая химия Изд.3 (1998) -- [ c.0 ]

Биохимия (2004) -- [ c.391 ]

Основы биологической химии (1970) -- [ c.9 , c.457 , c.459 ]




ПОИСК







© 2025 chem21.info Реклама на сайте