Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Прокариоты мембраны

    Прокариотная клетка отличается тем, что имеет одну внутреннюю полость, образуемую элементарной мембраной, называемой клеточной, или цитоплазматической (ЦПМ). У подавляющего большинства прокариот ЦПМ — единственная мембрана, обнаруживаемая в клетке. В эукариотных клетках в отличие от прокариотных есть вторичные полости. Ядерная мембрана, отграничивающая ДНК от остальной цитоплазмы, формирует вторичную полость. Наружные мембраны хлоропластов и митохондрий, окружающие заключенные в них функционально специализированные мембраны, играют аналогичную роль. Клеточные структуры, Офаниченные элементарными мембранами и выполняющие в клетке определенные функции, получили название органелл. Ядро, митохондрии, хлоропласты — это клеточные органеллы. В эукариотных клетках помимо перечисленных выше есть и другие органеллы. [c.18]


    В клетках разных групп прокариот обнаружены мембраны, построенные по принципу элементарной, иные, нежели ЦПМ. Строение, химический состав и функции наружной мембраны грамотрицательных эубактерий описаны ранее. Имеющиеся данные говорят о том, что наружную мембрану можно рассматривать [c.51]

    При электронно-микроскопическом наблюдении видно, что нуклеоид прокариот, несмотря на отсутствие ядерной мембраны, довольно четко отграничен от цитоплазмы, занимает в ней, как правило, центральную область и заполнен нитями ДНК диаметром около 2 нм. Не исключено, что на выявляемую в электронном микроскопе организацию прокариотной хромосомы большое влияние оказывают условия фиксации препарата. По имеющимся наблюдениям, в живой клетке нуклеоид занимает больше места в цитоплазме. [c.55]

    Поскольку — химические частицы, несущие положительный заряд, неравномерное их накопление по обе стороны мембраны приводит к возникновению не только химического (концентрационного) градиента этих частиц, но и ориентированного поперек мембраны электрического поля (суммарный положительный заряд, где происходит накопление Н , и отрицательный заряд по другую сторону мембраны). Таким образом, при переносе электронов на ЦПМ возникает трансмембранный электрохимический градиент ионов водорода, обозначаемый символом АЦн+ и измеряемый в вольтах (В, мВ), который состоит из электрического (трансмембранная разность электрических потенциалов A jr) и химического (концентрационного) компонентов (фадиент концентраций — АрН). Измерения показали, что на сопрягающих мембранах прокариот при работе дыхательных и фотосинтетических электронтранспортных цепей Арн+ достигает 200—250 мВ, при этом вклад каждого компонента непостоянен. Он зависит от физиологических особенностей организма и условий его культивирования. [c.101]

    Фотодинамический эффект обнаружен у всех живых организмов. У прокариот в результате фотодинамического действия индуцируются повреждения многих типов утрата способности формировать колонии, повреждение ДНК, белков, клеточной мембраны. Причина повреждений — фотоокисление некоторых аминокислот (метионина, гистидина, триптофана и др.), нуклеозидов, липидов, полисахаридов и других клеточных компонентов. [c.333]

    Как и все прокариоты, Е. соИ имеет клеточную стенку, к которой с внутренней стороны примыкает клеточная мембрана. Кроме большой двухцепочечной ДНК, локализованной в нуклеоиде, Е. соН, подобно другим прокариотам, содержит несколько мелких кольцевых ДНК, которые называются плазмидами. Бактерии способны передвигаться в водной среде при помощи мембранных структур, называемых жгутиками. Важнейшая роль цитоплазматической мембраны заключается в избирательном транспорте питательных веществ в клетку и продуктов метаболизма из клетки. В цитоплазме Е. соИ локализованы рибосомы, секреторные гранулы, а также запасники питательных веществ — жиров или углеводов. Для прокариотических клеток характерно образование нитевидных ассоциатов, которые в определенных условиях могут диссоциировать на отдельные клетки. [c.12]


    Мембраны прокариот и эукариот, так же как и мембраны животных и растительных клеток, отличаются друг от друга по набору органелл, составу и свойствам. Наиболее сложноорганизованными являются клетки эукариот. [c.302]

    У грамположительных прокариот муреин составляет основную массу вещества клеточной стенки (от 50 до 90 %), у грамотрицательных — содержание пептидогликана значительно меньше (1-10 %). Клеточная стенка изученных видов цианобактерий, сходная с таковой грамотрицательных прокариот, содержит от 22 до 52 % этого гетерополимера. Под электронным микроскопом клеточная стенка грамположительных прокариот выглядит как гомогенный электронноплотный слой, толщина которого колеблется для разных видов от 20 до 80 нм. У грамотрицательных прокариот обнаружена многослойная клеточная стенка внутренний электронноплотный слой толщиной порядка 2-3 нм состоит из пептидогликана снаружи к нему прилегает, как правило, толстый слой (8-10 нм), имеющий характерное строение элементарной мембраны и поэтому получивший название наружной мембраны [21]. [c.15]

    Функции клеточной стенки прокариот. Клеточная стенка прокариот выполняет разнообразные функции механически заш иш ает клетку от воздействий окружаюш,ей среды, обеспечивает поддержание ее внешней формы, дает возможность клетке суш,ествовать в гипотонических растворах. В первую очередь, в этом заслуга пептидогликана. Структурная дифференцировка клеточной стенки у грамотрицательных прокариот, приведшая к формированию дополнительного слоя в виде наружной мембраны, значительно расширила круг функций клеточной стенки. Прежде всего это связано с проблемами проницаемости и избирательного транспорта веществ в клетку. Наружная мембрана имеет специфические и неспецифические каналы (диффузионные поры) для пассивного транспорта веществ и ионов, необходимых клетке, т. е. осуществляет функции дополнительного клеточного барьера (основной — ЦПМ). Она препятствует проникновению в клетку токсических веществ, что находит отражение в большей устойчивости грамотрицательных прокариот (сравнительно с грамположительными) к действию некоторых ядов, химических веществ, ферментов и антибиотиков. Появление у грамотрицательных прокариот дополнительной мембраны в составе клеточной стенки фактически привело к созданию обособленной полости (периплазматического пространства), отграниченной от цитоплазмы и внешней среды специфическими мембранами и несущей важную [c.19]

    Клеточная стенка прокариот занимает свое особое место в структуре и архитектонике клеток Ее нельзя исключать из метаболических процессов, так как она занимает пограничное положение между внутренней (протопласт) и внешней средами, и через нее должны проходить различные вещества в обоих направлениях Однако главные функции ее — поддержание формы клетки и защитная, тогда как основная функция клеточной мембраны — регуляторно-метаболическая Клеточная стенка и клеточная мембрана вместе формируют оболочку [c.91]

    Двигателем в распределении реплицированных молекул ДНК по дочерним клеткам (по крайней мере - у прокариот) выступает клеточная мембрана, к которой прикрепляется ДНК [c.171]

    СТРУКТУРНЫЕ И ФУНКЦИОНАЛЬНЫЕ ОСОБЕННОСТИ МЕМБРАН ПРОКАРИОТ И ЭУКАРИОТ Мембраны прокариот [c.38]

    Все клетки имеют ограничивающую их плазматическую мембрану, цитоплазму, рибосомы и ядерную зону или ядро. Размеры и форма клеток определяются скоростями физической диффузии молекул питательных веществ и кислорода, а также соотношением между площадью поверхности и объемом клетки. Существуют два больших класса клеток прокариотические и эукариотические. Прокариоты, к которым относятся бактерии и сине-зеленые водоросли,-это простые клетки малых размеров, характеризующиеся тем, что содержащийся в них генетический материал не окружен мембраной. У них есть клеточная стенка и плазматическая мембрана, а некоторые [c.50]

    Прокариоты. Простые одноклеточные организмы (нанример, бактерии), содержащие одну хромосому и не имеющие ядерной мембраны и связанных с мембраной органелл. [c.1017]

    Организмы, относящиеся к прокариотам и эукариотам, существенно различаются по своему строению и свойствам. У прокариотов нет четко выраженного ядра, ядер-ной мембраны, четко оформленных митохондрий строе- [c.19]

    К оболочке вплотную прилегает цитоплазматическая мембрана. Она обладает избирательной проницаемостью, т. е. пропускает внутрь клетки и отводит из нее определенные вещества. Благодаря такой способности мембрана играет роль органеллы, концентрирующей питательные вещества внутри клетки и способствующей выведению наружу продуктов жизнедеятельности. Внутри клетки всегда наблюдается повышенное по сравнению о окружающей средой осмотическое давление. Цитоплазматическая мембрана обеспечивает его постоянство. Кроме того, она является местом локализации ряда ферментных систем, в частности окислительно-восстановительных ферментов, связанных с получением энергии (у эукариотов они находятся в митохондриях). В отличие от клеток эукариотов в прокариотической клетке отсутствует деление ее на отсеки. Клетки прокариотов не имеют ни комплекса Гольджи, ни митохондрий, не наблюдается у них и направленного движения цитоплазмы. Явления пиноцитоза и фагоцитоза прокариотам не свойственны. Из органелл только рибосомы аналогичны рибосомам эукариотов. [c.43]


    В то же время известно, что как в прокариотических, так и в эукариотических клетках часть рибосом, организованных в полирибосомы, является свободными (хотя в эукариотах они, повидимому, связаны с каким-то цитоскелетом ), а другая часть прикреплена к мембранам. В прокариотах полирибосомы могут сидеть на внутренней стороне цитоплазматической мембраны клетки, в то время как в эукариотах местом размещения мембраносвязанных рибосом является так называемый шероховатый эндо-плазматический ретикулум цитоплазмы прикрепленные рибосомы могут продуцировать Лептид непосредственно в мембрану. Соответственно, в зависимости от локализации рибосом, ко-трансляцион-ное внерибосомное сворачивание растущего полипептида может происходить либо в водной среде цитоплазмы, либо в гидрофобном окружении липидного бислоя мембраны. [c.274]

    Все клетки отграничены друг от друга и от окружающей среды с помощью спещгальной оболочки—клеточной мембраны. Со времен К. Негели, описавшего в 1855 г. структуру мембран, окружающих живые клетки, представления об устройстве и функциях мембран существенно обогатились. 1Слеточная мембрана во многом определяет свойства, поведение и даже форму клетки. Мембраны прокариот и эукариот различаются между собой по составу и свойствам. Растительные и животные клетки также отличаются друг от друга как по набору органелл, так и по свойствам мембран (рис. 9.1). [c.298]

    Сине-зеленые водоросли ( yanophyta или yanoba teria) представляют собой единственную большую группу прокариот, которые способны к фотосинтезу с выделением кислорода, сходному с фотосинтезом у высших растений. Однако тилакоидные мембраны у них находятся не в хлоропластах, а распределены по всей цитоплазме клетки, преимущественно на ее периферии. Фотосинтетические пигменты сине-зеленых водо- [c.353]

    Обоснование того, что прокариотный и эукариотный типы клеточной организации являются наиболее существенной границей, разделяющей все клеточные формы жизни, связано с работами Р. Стейниера (К. 81ашег, 1916—1982) и К. ван Ниля, относящимися к 60-м гг. XX в. Поясним разницу между прокариотами и эукариотами. Клетка — это кусочек цитоплазмы, отграниченный мембраной. Последняя под электронным микроскопом имеет характерную ультраструктуру два электронно-плотных слоя каждый толщиной 2,5 —3,0 нм, разделенных электронно-прозрачным промежутком. Такие мембраны получили название элементарных. Обязательными химическими компонентами каждой клетки являются два вида нуклеиновых кислот (ДНК и РНК), белки, липиды, углеводы. Цитоплазма и элементарная мембрана, окружающая ее, — непременные и обязательные структурные элементы клетки. Это то, что лежит в основе строения всех без исключения клеток. Изучение тонкой структуры выявило существенные различия в строении клеток прокариот (бактерий и цианобактерий) и эукариот (остальные макро- и микроорганизмы). [c.18]

    Функции ЦПМ прокариот. ЦПМ прокариот выполняет разнообразные функции, в основном обеспечиваемые локализованными в ней соответствующими ферментными белками. Первоначально была постулирована барьерная функция клеточной мембраны, получившая позднее экспериментальное подтверждение. С помощью специальных переносчиков, называемых транслоказами, через мембрану осуществляется избирательный перенос различных органических и неорганических молекул и ионов. В ней локализованы ферменты, катализирующие конечные этапы синтеза мембранных липидов, компонентов клеточной стенки и некоторых других веществ. [c.49]

    Внутрицитоплазматические мембраны прокариот. Выше были отмечены различия между прокариотной и эукариотной клетками в отношении их мембранных систем (см. табл. 1). Отсутствие у прокариот типичных органелл, т.е. структур, полностью отграниченных от цитоплазмы элементарными мембранами, — принципиальная особенность их клеточной организации. [c.51]

    Примером внутрицитоплазматических включений, имеющих приспособительное значение, служат магнитосомы и газовые вакуоли, или аэросомы, обнаруженные у водных прокариот. Газовые вакуоли найдены у представителей, относящихся к 15 таксономическим группам. Это сложно организованные структуры, напоминающие пчелиные соты (см. рис. 4). Состоят из множества регулярно расположенных газовых пузырьков, имеющих форму вытянутого цилиндра с заостренными концами (диаметр 65 — 115, длина 200—1200 нм). Каждый пузырек окружен однослойной белковой мембраной толщиной 2 — 3 нм, построенной из одного или двух видов белковых молекул, и заполнен газом, состав которого идентичен таковому окружающей среды. Мембрана газовых пузырьков проницаема для газов, но не проницаема для воды. Число газовых пузырьков, составляющих аэросому, у разных видов различно и зависит от внешних условий. Основная функция газо- [c.62]

    Гидрогеназы многих прокариот также обнаруживают высокую чувствительность к молекулярному кислороду, которая in vitro в большой мере зависит от метода вьщеления и степени очистки. Как правило, более устойчивы к Oj неочищенные ферментные препараты. По сравнению с мембрансвязанным ферментом устойчивость к О2 гидрогеназы, отделенной от мембраны, обычно ниже. Фермент, полученный из клеток анаэробов, более чувствителен к О2, чем вьщеленный из клеток аэробных прокариот. [c.329]

    Пептидогликан образует только внутренний слой клеточной стенки, неплотно прилегая к ЦПМ. У разных видов грамотрицательных прокариот содержание этого гетерополимера колеблется в широких пределах (1-10 % и больше от веществ клеточной стенки). Предполагается, что у большинства видов грамотрицательных прокариот он образует одно- или двухслойную структуру, характеризующуюся весьма редкими поперечными связями между гетерополимерными цепями. Снаружи от пептидогликана располагается дополнительный слой клеточной стенки — наружная мембрана. Она состоит из полисахаридов, белков и липидов. Специфическим компонентом наружной мембраны является липополисахарид сложного молекулярного строения (рис. 1.4). [c.17]

    Газовые вакуоли. Примером внутрицитоплазматических включений, имеющих приспособительное значение, служат газовые вакуоли, или аэросомы, обнаруженные у широкого круга водных прокариот. В настоящее время газовые вакуоли найдены у представителей, относящихся к 15-ти таксономическим группам. Газовые вакуоли — сложноорганизованные структуры, напоминающие пчелиные соты. Каждая газовая вакуоль представляет собой скопление газовых пузырьков (везикул). Эти пузырьки имеют веретенообразную форму (цилиндры с коническими концами). Их оболочка состоит не из обычной мембраны, а из чистого белка, обладающего складчатой структурой толщина ее составляет всего лишь 2 нм. На фотографиях можно различить ребра, расположенные на цилиндрической части пузырька подобно обручам на бочке. Оболочка построена из белковых субъединиц с молекулярной массой 14-10 . Белковые молекулы, очевидно, ориентированы таким образом, что внутренняя сторона стенки оказывается гидрофобной, а наружная — гидрофильной. Мембрана газовых пузырьков проницаема для газов, но непроницаема для воды. В клетке имеется множество газовых пузырьков, расположенных параллельно друг другу. В световом микроскопе такое скопление газовых пузырьков (т. е. газовая вакуоль) имеет вид оптически пустого П1астка, сильно преломляющего свет. [c.36]

    У прокариот и эукариот имеется также другой тип секреции —посттрансляционный, когда через мембрану транспортируется завершенный белок Механизм транспорта объясняется либо с привлечением триггерной гипотезы У Уикнера (1979), либо ранее рассмотренной сигнальной гипотезы (рис 11) Согласно обеим гипотезам роль белка - предшественника, обладающего сигнальной последовательностью, весьма велика В первом случае эта последовательность обеспечивает скручивание полипептида так, что гидрофобные области его связываются с мембраной Затем белок может освобождаться из мембраны благодаря отделению сигналь- [c.57]

    Клеточная мембрана прокариот принципиально сходна по архитектонике с мембраной эукариотической клетки Тем не менее, она не является тем трехслойным сэндвичем (от англ sandwi h — бутерброд), о котором говорили до недавних пор В состав мембран входят фосфолипиды с полярными "головками", обращенными кнаружи, взаимодействзтощие между собой их гидрофобные хвосты из остатков жирных кислот обращены внутрь Мембранные [c.99]

    Какие же принципиальные различия существуют между клеточными мембранами прокариот и эукариот Эти различия касаются химического состава и функций (таблица 8) По химическому составу клеточные мембраны представляют собой гликопротеоли-пиды или гликолипопротеины, или, наконец, липогликопротеины, [c.100]

    Митохондрии являются местом осуществления окислительных процессов, в них локализованы ферменты цикла трикарбоновых кислот, дыхательная цепь, система окислительного фосфорилирова-ния. В клетках содержится от одной до нескольких тысяч митохондрий. У прокариот сходные но функциям структуры, возникающие из цитоплазматической мембраны, называют мезосомами. [c.43]

    Реснички и жгутики-подвижные структуры, или отростки, выступающие с поверхности многих одноклеточных эукариот и некоторых клеток животных (но не растений), построены по одному общему архитектурному плану (рис. 2-18). Важно, однако, подчеркнуть, что жгутики эукариот очень сильно отличаются от жгутиков прокариот. Жгутики прокариот намного тоньше (10-20 нм) и состоят из отдельных белковьгх нитей. Они представляют собой упругие, изогнутые стерженьки, вращательное движение которых целиком зависит от расположенных в клеточной мембране моторов . Жгутики эукариот гораздо толще (200 нм), имеют более сложную структуру и способны самостоятельно вращаться по всей своей длине. Реснички и жгутики эукариот окружены выступами клеточной мембраны и содержат по 9 пар микротрубочек, расположенных вокруг 2 цен-тральньЕс трубочек при этом образуется так назьшаемая структура 9 + 2 (рис. 2-18). Реснички й жгутики имеют одинаковый диаметр, но длина ресничек (не превышающая 10 мкм) значительно меньше длины жгутиков (не более 200 мкм). В большинстве случаев реснички служат для того, чтобы передвигать вещества вдоль поверхности клетки с помощью волнообразных, напоминающих греблю движений, тогда как жгутики действуют как пропеллеры, проталкиваю- [c.42]

    Ядерное вещество представляет собой нуклеоид. В отличие от эукариотической клетки ДНК бактериальной клетки не связана с гистонами и не отделена от цитоплазмы ядерной мембраной. Фибриллы бактериальной ДНК достаточно правильно ориентированы, поэтому ядерное вещество мо жно представить как образование, расположенное вдоль большего габарита клетки и имеющее толщину около 3—4 нм, но конфигурация нуклеои-да очень изменчива. ДНК —обособленный элемент, никогда не смешивающийся с цитоплазмой, в старых клетках ДНК упакована более компактно. Предполагают, что весь геном бактериальной клетки представлен одной гигантской замкнутой молекулой ДНК, с молекулярной массой 7 10 . Ее вполне можно расценивать как бактериальную хромосому. Но все же следует помнить, что ДНК бактерий упакованы менее плотно, чем в ядре эукариотической клетки, в ядерном веществе отсутствует мембрана, не найдены ядрышко и набор хромосом, ДНК не связана с основными белками — гистонами. Все это свидетельствует об эволюционно более примитивной форме организации ядерного вещества у прокариотов. Многие бактерии имеют капсулу или дополнительные внешние структуры жгутики, фимбрии, структурные тяжи. [c.33]

    В эукариотической клетке, как мы видели, имеется ядро, отделенное от окружающей его цитоплазмы ядерной мембраной. Ядро содержит хромосомы, несущие гены. Хромосомы состоят из ДНК и белка. При делении хромосомы распределяются между дочерними клетками в результате сложного процесса митоза и мейоза. Цитоплазма эукариотической клетки содержит в свою очередь различные субклеточные органеллы. Прокариотические клетки устроены проще. В них нет четкой гранииы между ядром и цитоплазмой, нет ядерной мембраны. ДНК в этих клетках не связана с белком и не образует структур, похожих на хромосомы эукариотов. Поэтому у прокариотов не обнаруживается процессов митоза и мейоза. Наконец, в этих клетках нет субклеточных органелл, которые напоминали бы митохондрии или иентриоли клеток эукариотов. Вряд ли можно сомневаться, что более просто устроенные прокариоты являются эволюционными предшественниками более сожных эукариотов. Лишь немногие из происшедших позднее событий биологической эволюции смогли оказать большее влияние на дальнейший ход эволюции органического мира, чем переход от прокариотической жизни к жизни эукариотической, который совершился в докембрии. Ведь именно этот переход сделал в конце концов возможным возникновение многоклеточных организмов, состоящих из высокодифференцированных клеток, обладающих специализированными функциями, и подготовил таким образом путь для появления макроскопических организмов. [c.47]

    Активный транспорт протонов из цитоплазмы поддерживается двумя типами реакций действием электронотранспортной цепи и гидролизом АТФ. Редокс-насос и гидролитический насос, перекачивающие ионы находятся в мембранах, способных превращать световую или химическую энергию в энергию Ацн+ (плазматические мембраны прокариот, сопрягающие мембраны хлоропластов и митохонрий). Электрохимический градиент протонов может быть использован для сопряженного транспорта вторичный активный транспорт) большого числа метаболитов — анионов, моносахаридов, аминокислот и т. д. [c.447]

    Простейшие клеточные организмы-это прокариоты (буквально предъядерные ). К прокариотам относятся бактерии и сине-зеленые водоросли. Диаметр самых мелких бактерий составляет около 0,1 мкм (100 нм), т.е. они меньше наиболее крупных вирусов, однако крупные бактерии, имеющие форму палочки, достигают длины 60 мкм при поперечном диаметре 6 мкм. Бактерии могут иметь сферическую форму, форму палочек или спиралей (рис. 1.4). Клеточная мембрана бактерий окружена прочной клеточной стенкой. Их наследственное вещество заключено в единственной хромосоме, однако ядерной мембраны, отделяющей хромосому от остальной клетки, у бактерий нет (почему они и названы прокариотами). У бактерий нет также митохондрий и некоторых других органелл, характерных для цитоплазмы высших (эукариотических) клеток. [c.17]


Смотреть страницы где упоминается термин Прокариоты мембраны: [c.348]    [c.46]    [c.52]    [c.101]    [c.198]    [c.25]    [c.125]    [c.162]    [c.30]    [c.31]    [c.45]    [c.85]    [c.206]    [c.236]    [c.103]   
Биологическая химия Изд.3 (1998) -- [ c.298 , c.299 ]




ПОИСК







© 2025 chem21.info Реклама на сайте