Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Упорядоченность в системе элементарных частиц

    Упорядоченность в системе элементарных частиц [c.62]

    И атомы, есть только электроны и ядра, причем последние начинают уже распадаться на протоны и нейтроны. Все это является одним из проявлений второго закона термодинамики, в смысле увеличения числа микросостояний и снижения упорядоченности системы при распаде каждой структурной единицы материи на атомные и элементарные частицы. Таким образом, становится понятным различие между энтропией испаре-ния, рассчитанной по уравнению (236) и равной 88 Дж-моль - К , и энтропией объемного расширения, возникаюшей при увеличении объема жидкости при ее испарении [рассчитанной па уравнению (237) и равной 59,0 Дж-моль -К ]. Разность этих величин составляет 29 Дж-моль - К . Испарение жидкости соответствует переходу от квазикристаллической структуры жидкости к полностью разупорядоченному состоянию газа. Эти представления согласуются и с тем, что энтропия плавления составляет лишь примерно 21 Дж-моль -К , что соответствует переходу кристаллического вещества в жидкое состояние. То, что энтропия плавления меньше, чем указанное выше значение 29 Дж-моль -является доказательством того, что жидкость по своей структуре ближе к твердому телу, чем к газу. [c.241]


    По-видимому, следует термин тактоиды сохранить для систем коллоидного характера. В области полимерных жидких кристаллов, основными представителями которых являются жесткоцепные полимеры, лучше пользоваться терминологией, установившейся для жидкокристаллических систем, образуемых низкомолекулярными органическими соединениями, где элементарными частицами, определяющими образование упорядоченных систем, являются молекулы. Это тем более справедливо, что для наиболее важного класса полимерных жидких систем, по-видимому, полностью справедливо проведение аналогии с низкомолекулярными системами, как это успешно делается вообще для растворов полимеров. [c.23]

    Коалесценция частиц дисперсной фазы приводит к изменению дисперсности системы. Устойчивость к процессам коалесценции и коагуляции в реальных нефтяных дисперсных системах различна. Для рассмотрения механизмов образования элементов дисперсной фазы в нефтяных дисперсных системах удобно рассмотреть надмолекулярные структуры в системе, а может быть и частицы дисперсной фазы, состоящие из смолисто-асфальтеновых веществ или высокомолекулярных парафиновых углеводородов, в виде жестких тел с малыми размерами, определенной формы и некоторым запасом поверхностной энергии, способствующей взаимодействию этих тел, с образованием пространственных структур наивыгоднейшей конфигурации, то есть наиболее компактных и с минимально возможным объемом. При пониженных температурах этот процесс приводит в конечном итоге к образованию упорядоченной кристаллической структуры. При повышенных температурах, вследствии дезорганизующего воздействия теплового движения, устанавливается лишь частичное равновесие сосуществующих в системе молекулярных или надмолекулярных группировок конечных размеров, имеющих сходную ориентацию. Подобные группировки в нефтяных дисперсных системах отличаются расплывчатыми границами, образованными переходным сольватным слоем. Определение размеров элементарных группировок в нефтяных дисперсных системах является достаточно сложной задачей, не решенной окончательно до последнего времени. [c.56]

    Рентгенографические методы анализа щироко используются для изучения структуры, состава и свойств различных материалов, и в том числе, строительных. Широкому распространению рентгенографического анализа способствовала его объективность, универсальность, быстрота многих его методов, точность и возможность решения разнообразных задач, часто не доступных для других методов исследования. С помощью рентгенографического анализа исследуют качественный и количественный минералогический и фазовый состав материалов (рентгенофазовый анализ) тонкую структуру кристаллических веществ — форму, размер и тип элементарной ячейки, симметрию кристалла. Координаты атомов в пространстве (рентгеноструктурный анализ) степень совершенства кристаллов и наличие в них зональных напряжений размер мозаичных блоков в монокристаллах тип твердых растворов, степень их упорядоченности и границы растворимости размер и ориентировку частиц в дисперсных системах текстуру веществ и состояние поверхностных слоев различных материалов плотность, коэффициент термического расширения, толщину листовых материалов и покрытий внутренние микродефекты в изделиях (дефектоскопия) поведение веществ при низких и высоких температурах и давлениях и т. д. [c.74]


    Согласно теории диссипативных систем и теории бифуркаций Пригожина, возникновение упорядоченной структуры из беспорядка означает неожиданное и резкое отклонение поведения системы от соответствующей термодинамической ветви, скачкообразное изменение свойств, получившее название "бифуркация". Возникновение бифуркаций связано с флуктуациями - беспорядочным, чисто случайным явлением, которое проявляется в определенных условиях и вызвано специфическими молекулярными свойствами микроскопических составляющих, т.е. тем, что по определению не учитывается равновесной термодинамикой и линейной неравновесной термодинамикой. В равновесных системах флуктуации симметричны, обратимы, случайны и образуют сплошной фон. Их эволюция может быть ограниченной и кратковременной, а поэтому они, как правило, не влияют на свойства системы. Известным исключением является флуктуация плотности, определяющая броуновское движение коллоидной частицы и классическое релеевское рассеяние света гомогенной средой. Общий характер равновесных процессов, в которых отсутствуют бифуркации, не зависит от особенностей внутреннего строения и взаимодействий микроскопических частиц. Именно благодаря этому обстоятельству равновесная термодинамика обладает единым теоретическим базисом - универсальной теорией, не учитывающей внутренних свойств элементарных составляющих и, следовательно, справедливой для всех процессов такого рода, и поэтому может строиться как наука исключительно на аксиоматической основе. [c.92]

    В 1926 г. Джиок и Дебай независимо друг от друга предложили использовать в качестве такой системы парамагнитные соли. В основе этой идеи лежит то обстоятельство, что энтропия системы определяется не только скоростями движения частиц, но их ориентацией. Парамагнитное вещ,ество можно рассматривать как состоящее из элементарных магнитных диполей, обладающих магнитным моментом, но очень слабо взаимодействующих между собой. Вплоть до гелиевых температур диполи расположены хаотически, что обусловлено их тепловым движением и слабым взаимодействием. Однако они могут быть ориентированы (переведены в упорядоченное состояние) путем наложения внешнего магнитного поля. Появляется возможность уменьшать энтропию системы при помощи внешнего магнитного поля, напряженность которого Н может рассматриваться в качестве параметра состояния X. Тогда в соответствии с формулой (2) для такой системы получаем соотношение з = Т, Й) и принципиальную возможность использовать ее для целей охлаждения. [c.22]

    Под структурой раствора (его химической организацией) мы понимаем статистическую упорядоченность сложной равновесной системы растворитель—растворенное вещество—продукты их взаимодействия в элементарном объеме при заданных условиях, характеризующихся определенными ближним и дальним окружением относительно выбранных частиц раствора разной природы, типом внутри- и межчастичных взаимодействий, степенью их связанности. [c.19]

    Структура и механизм химических превращений. Реакционную смесь в любой произвольный момент времени и в любом элементарном объеме реактора будем рассматривать как систему, содержащую исходные и конечные продукты и промежуточные активные частицы (радикалы). В этой системе одновременно протекают все элементарные реакции, причем скорость каждой определяется реакционной способностью и концентрациями реагирующих компонентов и физическими параметрами процесса. Общее число компонентов системы и реакций, в которых они участвуют, оказывается очень большим это касается пиролиза как индивидуальных, так и промышленных сырьевых фракций. Поэтому при моделировании целесообразно выполнить некоторое упорядочение всей совокупности компонентов и реакций и рассматривать их в виде самостоятельных групп при этом очень важно сгруппировать их таким образом, чтобы не исказить механизма процесса. [c.27]

    Под сольватацией в молекулярных растворах понимают взаимодействие молекулярных или надмолекулярных объектов системы с молекулами растворителя, при котором не происходит никаких химических превращений молекул растворяемых частиц и растворителя, их ассоциирования и агрегирования, а образуется новый раствор с определенным химическим составом и структурой. Структура полученного раствора зависит во многом от природы растворителя и растворенрюго вещества, их концентрации, внешних условий и воздействий на систему. Под структурой раствора в зтом случае понимают соответствующую установившимся межмолекулярным взаимодействиям статистическую упорядоченность системы растворитель-растворенное вещество-продукты их взаимодействия в элементарном объеме при заданных условиях. [c.39]

    Энтропия активации Д5= дает некоторую информацию о структуре переходного состояния и механизме элементарной реакции. Величина А8 связана с изменением упорядоченности системы, которая в рассматриваемом процессе образования активированного комплекса зависит от молекуляриости реакции. Для бимолекулярных реакций величина Д5" , как правило, отрицательная—минус 63 —минус 168 Дж/(моль-К) [минус 15 —минус 40 кал/(моль-°С)] при образовании активированного комплекса из двух частиц или молекул упорядоченность системы возрастает, что ведет к уменьшению энтропии по сравнению с исходным состоянием. В отличие от этого, при мономолекулярных реакциях из-за уменьшения упорядоченности системы при удлинении рвущейся связи образование активированного комплекса приводит [c.16]


    Как уже отмечалось, упорядоченные по взаимному расположению частиц системы образуются не только веществами, в которых элементарными частицами являются асимметричные (и дифильные) молекулы, но и асимметричные надмолекулярные образования. Сюда относятся различные коллоидные системы, включая также такие, как взвеси удлиненных кристаллитов пятиокиси ванадия и некоторых типов глин с пластинчатой структурой частиц. Аналогичные упорядочения наблюдаются в биологических системах, в частности в водных дисперсиях вирусов, среди которых наиболее подробно изучен в этом отношении вирус табачной мозаики. В коллоидной химии для подобных систем, в которых происходит спонтанное самоупорядочение элементарных частиц, установился термин тактоиды . Этот термин был использован Флори и для систем жесткоцепной полимер—растворитель, хотя по своему строению макромолекулы жесткоцепных полимеров нельзя непосредственно отнести к надмолекулярным образова- [c.22]

    Морфология образующихся частиц зависит от целого ряда факторов, но наиболее важным является соотношение скоростей их зарожд ения и роста, которые в свою очередь в значительной степени зависят от пересыщения системы. Окончательный размер частиц определяется числом центров кристаллизации и скоростью осаждения вещества. Умеренно растворимые вещества, например карбонаты, обычно осаждаются в виде очень мелких частиц. При медленном, регулируемом росте умеренно растворимых солей можно получать монодисиерсные осадки. При высоких степенях пересыщения первичный критический центр кристаллизации может быть меньше размера элементарной ячейки решетки и начинает расти, не имея упорядоченной кристаллической структуры. Таким путем можно получать аморфные или частично кристаллизованные осадки [И]. При низких степенях пересыщения образуется хорошо сформированный кристаллический осадок, причем форма частиц зависит от структуры кристалла и от процессов, преобладающих на поверхности раздела фаз в ходе роста. На морфологию осадка сильно влияет скорость роста кристаллов. При низких скоростях образуются компактные кристаллы, форма которых соответствует кристаллической структуре. Ионы в растворе вблизи поверхности раздела кристалл — жидкость играют важную роль в модификации формы кристалла. При высоких степенях пересыщения нередко образуются объемистые осадки с дендритными частицами. При еще больших уровнях пересыщения получаются очень мелкие частицы, способные к агломерации или образованию золей. [c.19]

    В ПКС последовательное изменение параметров (степень упорядочения, размер и форма частиц, величина межчастичных расстояний, природа фаз, наличие примесей) вызывает обычно соответствующее изменение упруго-пластичных свойств. При этом отчетливо выявляются особенности в природе и закономерностях действия сил между микрообъектами, что привлекает внимание исследователей в области поверхностных явлений, молекулярной физики, биофизики, а также специалистов по переработке дисперсных систем, которым необходимо знать оптимальные условия и режимы технологических процессов протекания элементарных актов взаимодействия микрообъектов и образования коллоидных структур. Так, например, многие лакокрасочные композиции из дисперсий полимеров вместе с частицами пигментов образуют малопрочные ПКС, превращающиеся при формировании покрытий в необратимые структуры. На изменение свойств композиций со временем, а также в процессах сушки и термической обработки решающее влияние оказывает взаимодействие дисперсных частиц друг с другом и с жидкой средой. Хорошее покрытие с равномерным распределением пленкообразующего вещества получается, если дисперсия как в исходном состоянии, так и при ее концентрировании сохраняет достаточную устойчивость к непосредственному слипанию частиц, т. е. когда в системе отсутствует коагуляция (рис. 2) [6]. При этом частицы взаимодействуют через разделяющие их жидкие прослойки. Аналогично в случае керамических масс, шликеров и многих других паст ( структурированных суспензий ), важнейшие технологические свойства которых — пластичность и способность к токсотропным превращениям — определяются прежде всего взаимодействием частиц друг с другом и с дисперсионной средой [7—9]. Чтобы взаимодействие было опти- мальным, а также для выполнения других требований, предъ- [c.11]


Смотреть страницы где упоминается термин Упорядоченность в системе элементарных частиц: [c.113]    [c.107]    [c.56]    [c.10]   
Смотреть главы в:

Эволюция без отбора Автоэволюция формы и функции -> Упорядоченность в системе элементарных частиц

Эволюция без отбора -> Упорядоченность в системе элементарных частиц




ПОИСК





Смотрите так же термины и статьи:

Элементарные частицы



© 2025 chem21.info Реклама на сайте