Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействие положительных ионов с другими частицами

    Следовательно, при растворении, с одной стороны, энергия затрачивается на разрыв связей между молекулами или ионами растворяемого вещества, с другой стороны, энергия выделяется за счет взаимодействия частиц растворенного вещества и молекул растворителя. Значит, выделение или поглощение тепла при растворении является результатом этих двух процессов. Если на разрыв связей между частицами растворяемого вещества затрачивается энергии больше, чем выделяется при взаимодействии этих частиц с молекулами растворителя, раствор будет охлаждаться (тепловой эффект растворения отрицательный). Если же взаимодействие частиц растворенного вещества с молекулами растворителя сопровождается большим выделением энергии, чем это необходимо на разрыв связей между частицами растворяемого вещества, раствор будет разогреваться (тепловой эффект растворения положительный). Например, при растворении хлористого калия идет как поглощение тепла, так и его выделение. Однако последнее зна  [c.128]


    Основной закон поглощения отражает только физическую сторону фотометрических определений, а именно — зависимость поглощения света от концентрации окрашенного вещества и толщины поглощающего слоя. При выводе уравнения (1.4) предполагалось, что окрашенные частицы при разбавлении раствора остаются неизменными, т. е. не взаимодействуют с молекулами растворителя и. ионами других веществ, присутствующих в анализируемом растворе. В реальных условиях аналитических определений некоторые окрашенные вещества при разбавлении или при действии посторонних веществ частично разрушаются с образованием бесцветных (или иначе окрашенных) продуктов. Вследствие этого нарушается прямо пропорциональная зависимость между концентрацией и оптической плотностью раствора — наблюдается отклонение от закона Бугера — Ламберта — Бера. Отклонения от основного закона поглощения называют положительными или отрицательными в зависимости от расположения экспериментальной линии на графике выше или ниже теоретической прямой (рис. 1.7). Эти отклонения [c.13]

    Ионная (электровалентная, или гетерополярная) связь. С помощью ионной связи построено большинство неорганических соединений. Эта связь возникает между атомами, которые сильно отличаются по электроотрицательности. Процесс образования связи состоит в передаче электрона от одного атома к другому. Отдавая электрон, атом превращается в положительный ион — катион, а второй атом, приобретая этот электрон, переходит в отрицательно заряженную частицу — анион. Образовавшиеся противоположно заряженные ионы связываются силами электростатического взаимодействия. Схематически это можно представить так  [c.19]

    Взаимодействие положительных ионов с другими частицами 71 [c.71]

    Любой водный раствор представляет собой сложную гомогенную систему, в которой вода не является пассивной средой, а принимает участие в химических процессах, протекающих в растворах. Ионы любого металла не находятся в растворе в виде каких-либо свободных положительных частиц, а взаимодействуют с водой, образуя различные формы гидратных соединений, в том числе и аквакомплексы, а также с другими частицами, могущими выполнять роль аддендов, образуя и с ними комплексные соединения. Такими аддендами могут являться анионы (0Н , СГ, Вг , Г, СЫЗ", ЗОГ, РО ", N07 и др.), а также некоторые нейтральные частицы, например МНз. [c.11]

    Экспериментальные и расчетные данные показывают, что наряду с известными очень слабыми электролитами, характеризующимися большим положительным значением рД, растворы которых содержат очень мало ионов и очень много недиссоциированных молекул, могут быть электролиты с отрицательными величинами рД, т. е. с константами много больше единицы. Растворы таких электролитов содержат очень мало молекул и очень много ионов. В растворах тех и других электролитов существует равновесие между ионами и недиссоциированными незаряженными частицами. Однако обнаружить малое число непроводящих частиц—молекул на фоне большого числа ионов значительно труднее, чем обнаружить малое число ионов в присутствии большого избытка молекул. Поэтому казалось, что первые не подчиняются закону действия масс. Неприложимость закона действия масс усугублялась еще сильным электролитическим взаимодействием между ионами (см. гл. IV). Естественно, что подобные электролиты были выделены в особый класс—сильных электролитов. Выделение класса сильных электролитов в свое время и было сделано именно вследствие неприложимости к их диссоциации в водных растворах закона действия масс, а также вследствие установления для большинства из них ионной кристаллической решетки. Однако образование этими веществами ионной кристаллической решетки в твердом состоянии еще не исключает возможности образования ими молекул с полярными связями в парообразном состоянии, находящимися в равновесии со своими димерами. С другой стороны, многие ионные кристаллы, как оказалось, имеют элементы молекулярной решетки. [c.349]


    Из других промежуточных частиц положительные и отрицательные ионы могут принимать участие в конкуренции реакций первого и второго порядков. При этом нейтрализация положительного иона электроном или отрицательным ионом может быть реакцией второго порядка, конкурирующей с такими реакциями первого порядка, как ионно-молекулярные реакции положительного иона и диссоциация положительного или отрицательного иона. Взаимодействие отрицательного иона в соответствии со вторым порядком было установлено при радиолизе водных систем, тогда как такое взаимодействие для положительных ионов еще не доказано. [c.54]

    В результате акта перезарядки получается быстро движущаяся нейтральная частица газа (бывшая до этого положительным ионом) и медленно движущийся положительный ион (прежняя нейтральная частица). Обмен электронами происходит тем легче, чем ближе друг к другу ионизационные потенциа.т1ы взаимодействующих частиц. [c.130]

    Распределение электронов плазмы по энергиям. Первоначально было постулировано максвелловское распределение электронов плазмы по энергиям. Ход логарифмической характеристики электронного тока на зонд показал, что такое распределение действительно имеет место в большом числе случаев, а в ряде других представляет собой хорошее приближение. Но вопрос о законе распределения электронов по скоростям этим не был снят. Возникла необходимость в уточнении закона распределения, приведшая к ряду теоретических работ. Принципиально закон распределения электронов плазмы по скоростям может быть выведен из газокинетического уравнения Больцмана при условии правильного учёта взаимодействий электронов с нейтральными частицами газа, с положительными и отрицательными ионами, а также между собой. Газокинетическое уравнение выведено Больцманом для нейтрального газа из рассмотрения баланса, в элементе объёма 0, числа частиц, импульсы которых соответствуют элементарному объёму пространства моментов и дано им для случая наличия в газе двух родов частиц в виде [c.296]

    Беспорядочное тепловое движение заряженных частиц в газе. Диффузия. Как и всякие другие микрочастицы, электроны и ионы являются носителями тепловой энергии и постоянно находятся в беспорядочном тепловом движении. При отсутствии поля это движение такое же, как и обычное тепловое движение частиц ни одно направление движения не имеет преимущества перед другим различные скорости распределены между отдельными частицами по законам случайных явлений скорость каждой частицы меняется по величине и направлению после каждого её столкновения (взаимодействия) с другой частицей. В первом приближении мы имеем право не учитывать более детально таких редких явлений среди общего числа соударений, как ионизация толчком, образование отрицательных ионов, рекомбинация положительных ионов и электронов и другие неупругие соударения. Мы вправе рассматривать ионизованный газ с молекулярно-кинетической точки зрения как смесь нейтрального газа и отдельных газов, составленных совокупностью электронов, положительных ионов, отрицательных ионов, возбуждённых частиц. Каждому из этих газов мы вправе приписывать своё парциальное давление и говорить о его концентрации. [c.259]

    Проявления волновой природы электронов при их движении в газе неравномерное рассеяние электронов, эффект зависимости длины свободного пути электрона от его скорости. Многочисленные данные о движении электронов в электронных трубках, почерпнутые из практики, а также ряд тщательно поставленных количественных опытов отклонения электронов в электрическом и магнитном полях показывают, что к свободным электронам, беспрепятственно движущимся в этих полях, применимы законы электродинамики и механики с учётом зависимости массы электрона от скорости. В частности, свободный электрон может обладать любым значением энергии и любым импульсом, без каких-либо квантовых ограничений. Иначе обстоит дело, когда электрон встречает на своём пути ту или иную частицу и вступает с ней во взаимодействие. Это относится не только к тому случаю, когда электрон, передавая частице часть своей энергии, переводит её из одного энергетического состояния в другое или же захватывается этой частицей (например, при образовании нейтрального атома из положительного иона и электрона), но и к упругим соударениям электронов с другими частицами. Так, распределение электронов, рассеянных частицами газа по различным направлениям их дальнейшего движения, не соответствует распределению, вытекающему из обычных законов механики и электродинамики. Оказывается, что при переходе от малых углов рассеяния к большим наблюдается ряд максимумов и минимумов. [c.279]


    При облучении полимера при температуре выше вторичные электроны после потери кинетической энергии рекомбинируют с ионом, возникшим при эмиссии этого электрона, или каким-нибудь другим положительным ионом, находящимся вблизи. В то же время при облучении полимера, находящегося в стеклообразном состоянии, часть вторичных электронов захватывается нейтральными молекулами. Имеющими положительное сродство к электрону, свободными радикалами, полостями диэлектрика и т. д., причем высвобождаются электроны из этих ловушек очень медленно, если сохраняются изотермические условия при Т Тд, или значительно быстрее при нагревании образца до Т Тд. В последнем случае разрушение ловушек индуцируется началом локального движения в полимере, и в этом движении участвуют молекулы, находящиеся вблизи электронной ловушки. Если же электрон связывается с частицами с высоким сродством к электрону, такими, например, как радикалы, вероятнее всего, что решеточная энергия кТ при Т<г недостаточна для освобождения электрона. И вклад этого электрона в люминесценцию полимера будет запаздывать до тех пор, пока не произойдет переход полимера из стеклообразного в эластическое состояние. При этой температуре становятся возможными смещения на большие расстояния и происходит нейтрализация зарядов вследствие сближения и взаимодействия ион-радикала [c.232]

    С другой стороны, равенство концентраций противоположных по знаку зарядов сближает плазму с растворами электролитов. Недаром к ней неоднократно применялась теория Дебая—Гюккеля. Плазма, как известно, сильно взаимодействует с магнитным полем. Отсюда вытекают попытки использовать ее в так называемых МГД-генераторах. В случае газов с молекулой, содержащей более одного атома, состав плазмы сложен. В качестве примера рассмотрим состав азотной плазмы. Здесь интересно, что концентрация молекулярных положительных ионов N2 нигде не достигает значительных величин в связи, очевидно, с наступающей диссоциацией азота на атомы. Для нас, впрочем, больший интерес представляет водородная плазма в области температур до 5000°К, содержащая сравнительно мало заряженных частиц, но много атомов водорода. При 5000°К концентрация атомов водорода достигает 98,8%, снижаясь до 1,36% при 2500°К. Если иметь в виду реакцию пиролиза метана до ацетилена [c.199]

    Следует также указать, что даже в гомогенном растворе при наличии ионного роста цепи происходит, по крайней мере в принципе, в некоторой степени регулирование способа вхождения отдельных молекул мономера в растущую макромолекулу. Схемы (IV) и (V) показывают, что реакционноспособный — положительный или отрицательный — конец цепи в обоих случаях находится в сфере действия противоиона. Поскольку весь процесс протекает в органическом растворителе с низкой диэлектрической проницаемостью, то кулоновское взаимодействие между противоположно заряженными частицами достаточно велико, а поэтому оба иона будут в общем оставаться поблизости один от другого, особенно если температура низка и броуновское движение вследствие этого не очень интенсивно. Если противоион может взаимодействовать или образовывать каким-либо путем комплексы с мономером, то вполне возможно, что он подготавливает приближающуюся молекулу мономера для ее вхождения в цепь и осуществляет определенный контроль над каждым отдельным актом роста цепи. [c.24]

    Не все спектры могут быть, однако, разрешены в виде отдельных тонких линий даже при высоком разрешении приборов. Существуют действительно непрерывные спектры, указывающие на то, что, по крайней мере, какой-то один ряд уровней, в котором происходят переходы, не квантуется, а состоит из энергетических уровней, бесконечно близких друг к другу. Наличие непрерывных спектров у разряженных газов показывает, что излучающее вещество диссоциирует на положительный ион и электрон или, только в случае молекулярных газов, иногда на незаряженные частицы. В жидкостях и растворах взаимодействия между поглощающими молекулами или между поглощающими молекулами. растворенного вещества и молекулами растворителя приводят к расширению энергетических уровней, в результате чего [c.10]

    В кристаллических веществах другого типа действуют большие силы кулоновского (электрического) взаимодействия между образующими их частицами. Твердые вещества этого типа называются ионными кристаллами. В качестве примера можно привести многие известные соли, скажем Na l или КС1. Поскольку электрическое поле, создаваемое каждым ионом, обладает ненаправленным характером, в ионных кристаллах положительные ионы со всех сторон окружены отрицательными ионами и, наоборот, отрицательные ионы окружены положительными ионами. В большинстве простых солей вокруг каждого иона располагается по шесть или восемь ионов с зарядом противоположного знака, причем это число зависит от относительных размеров катиона и аниона. Как правило, если отношение этих радиусов, Гк ,тион/ тион, находится в пределах от 0,73 до 0,41, ионный кристалл имеет такую же структуру, как Na l, с числом ближайших соседей каждого иона, равным шести (рис. 10.14). При больших значениях отношения ионных радиусов у каждого иона оказывается восемь ближайших соседей с зарядами противоположного знака, как это показано для кристаллической структуры s l на рис. 10.15. [c.177]

    След ионизирующей частицы в среде, регистрируемый в виде промежуточных активных первичных частиц, называется треком. Различные виды пространственного распределения первичных активных частиц называют трековыми формами. Простейшая трековая форма-—одиночная пара (положительный ион- -электрон), находящийся на таком расстоянии от соседних пар, что их электростатическим влиянием можно пренебречь. Эта трековая форма образуется при лобовых соударениях электрона высокой энергии, при фото- и комптоновских эффектах. Если электрон (несущественно, первичный или вторичный) имеет не слишком большую энергию, то акты ионизации будут происходить на расстояниях порядка нанометра, так что взаимодействием между возникшими парами зарядов уже пренебречь нельзя. Такую трековую форму, включающую несколько пар ионов (2—10), называют шпорой. Обычно предполагают, что на образование одной шпоры с радиусом в несколько нанометров в среднем тратится около 100 эВ. Считают, что в шпоре, имеющей сферическую симметрию, первичные активные продукты распределены по Гауссу. Когда несколько шпор возникают вблизи друг друга, то, если эту группу можно представить как сферически симметричную, ее называют блобом (каплей), если же эта группа имеет цилиндрическую симметрию — коротким треком. Обычно считают, что в конце пробега электрон с начальной энергией порядка 1 кэВ образует короткий трек, а электрон с начальной энергией порядка 100 эВ — шпору. [c.40]

    Остановимся предварительно на некоторых отличиях свойств, присущих положительному водородному иону Н+. Водородный атом обладает той особенностью, отличающей его от всех остальных атомов, что, отдавая свой электрон, он остается в виде ядра без электронов, т. е. в виде частицы, диаметр которой в тысячи раз меньше диаметра остальных атомов. Кроме того, вследствие отсутствия у него электронов ион Н+ не испытывает отталкивания от электронной оболочки другого атома или иона, а, наоборот, притягивается ею. Это позволяет ему ближе подходить к другим атомам и вступать во взаимодействие с их электронами (и даже внедряться в их электронную оболочку). Поэтому в жидкостях водородный ион Н+ большей частью не сохраняется в виде самостоятельной частицы, а связывается с молекулами других веществ. В воде он связывается с молекулами Н2О, образуя ион HoO" , называемый ионом гидроксония-, с молекулой аммиака он связывается, образуя ион NHi — ион аммония и т. д. [c.82]

    При химическом взаимодействии атомов образуются молекулы. Молекулы бывают одноатомные (например, молекулы гелия Не), двухатомные (азота N2, оксида углерода СО), многоатомные (воды Н2О, бензола Се Не) и полимерные (содержащие до сотен тысяч и более атомов — молекулы металлов в компактном состоянии, белков, кварца). При этом атомы могут соединяться друг с другом не только в различных соотношениях, но и различным образом. Поэтому при сравнительно небольшом числе химических элементов число различных веществ очень велико. Состав и строение молекул определяют состояние вещества при выбранных условиях и его свойства. Например, диоксид углерода СО2 при обычных условиях — газ, взаимодействующий с водой, а диоксид кремния 8102 — твердое полимерное вещество, в воде не растворяющееся. При химических явлениях молекулы разрушаются, но атомы сохраняются. Во многих химических процессах атомы и молекулы могут переходить в заряженное состояние с образованием ионов — частиц, несущих избыточный положительный или отрицательный заряды. [c.18]

    Среди всех спектроскопических методов особое место занимает масс-спектрометрия. В этом случае энергия, сообщаемая веществу ( д > 10 эВ), ионизирует молекулу с отщеплением электронов и разрывом связей. При этом образуются заряженные и незаряженные частицы различной массы. Регистрируют частоту появления положительно заряженных молекулярных ионов или радикалов в зависимости от их массы. Ввиду такого формального сходства со спектром в данном случае говорят о масс-спектре. В то время как все другие спектроскопические методы позволяют непосредственно наблюдать явления, происходящие при взаимодействии вещества и излучения, масс-спектрометрия позволяет делать заключение о строении молекул косвенным путем. Располагая сведениями о найденных частицах и основываясь на возможных реакциях распада, устанавливают строение исходной молекулы. Подобные процессы превращения вещества, протекающие в масс-спектрометре, составляют отличительную особенность метода масс-спект-рометрии среди всех других методов молекулярной спектроскопии, основанных на физических процессах.  [c.179]

    Такой частицей могут быть ОН , галогенид-ион или любой другой отрицательный ион, а также нейтральная частица, способная отдавать электронную пару в последнем случае продукт взаимодействия должен, конечно, нести положительный заряд (см. т. 2, гл.10 и т. 3, гл. 13, 15 и 16). [c.226]

    Ионы, существующие в растворе электролита, испытывают различные воздействия со стороны окружающих частиц и соверщают постоянные перемещения, которые в отсутствие внешнего электрического поля имеют хаотичный характер. Наложение электрического поля приводит к появлению действующих на ионы электрических сил, которые имеют определенное направление. В результате возникает преимущественное перемещение (миграция) положительных ионов к отрицательному электроду, а отрицательных ионов — к положительному. Это обеспечивает перенос электрических зарядов. Возникает электрический ток, величина которого зависит от заряда ионов, их размера, характера сольватации и других взаимодействий с окружающими частицами, что, очевидно, связано с природой электролита и растворителя, а также с концентрацией раствора. Кроме того, величина электрического тока зависит от приложенного напряжения, геометрического расположения и размеров электродов, которые непосредственно влияют на напряженность возникающего электрического поля, а следовательно, и на скорость направленного движения ионов. Средняя скорость упорядоченного движения и данного типа ионов, отнесенная к напряженности действующего электрического поля Е, называется подвижностью (иногда абсолютной скоростью) иона и = ь/Е и определяется лишь природой и концентрацией раствора, а от величины электрического поля не зависит. В поле с напряженностью = 1 В-см числовые значения и к V совпадают. [c.216]

    Смешение коллоидных частиц, несущих различные заряды, может привести к перезаряду частиц, в результате которого коллоидный раствор сохранит устойчивость. Поясним все изложенное на примере. Пусть к коллоидному раствору положительно заряженных частиц иодида серебра добавлен аналогичный раствор, но отрицательно заряженных частиц. Положительный заряд частиц (AgI) связан с адсорбцией ионов из раствора, в котором находится некоторый избыток этих ионов. Отрицательный заряд таких же частиц (AgI) связан с адсорбцией ионов I", которые в некотором избытке находятся в другом растворе. При смешении таких растворов в первую очередь произойдет наиболее быстрое взаимодействие между ионами Ag+ и I". Если коллоидные растворы подобраны так, что количество ионов Ag+ приблизительно равно количеству ионов 1 , то после смешения в растворе практически не останет- [c.422]

    Степень адсорбции ионов электролитов частицами различных минералов неодинакова. Минералы, в которых между структурными элементами решеток действуют преимущественно близкодействующие ковалентные связи (кварц, глинистые минералы) с небольшой долей ионной составляющей (определяется степенью замещения кремния алюминием в полимерных каркасах, слоях) и с малой плотностью ее, характеризуются меньшей степенью воздействия на ионы электролитов. Наоборот, решетки, в которых связь между ее элементами преимущественно ионная (дальнодействующая) и плотность распределения зарядов по поверхности высокая (Са +СОз -, Мд +СОз - и др.), будут сильнее воздействовать на заряженные частицы электролитов. Таким образом, избирательная способность к ионам солей у известняков (а также у полевых шпатов, гематита) выше, чем у кварца и глинистых минералов. Кроме того, поскольку катионы обычно состоят из одной частички, имеющей малый размер и большую подвижность, а анионы чаще всего являются радикалами (СОз -, 5042") более крупных размеров и меньшей подвижности, на поверхности твердых тел быстрее адсорбируются катионы, чем анионы. Какая-то часть катионов Ыа+, К+, Са +, Mg2+ избирательно адсорбируется (в порядке Мд>Са>ЫаЖ) под действием поверхностной энергии Гиббса в первую очередь на поверхности зерен известняка, полевого шпата, затем кварца, сообщая этим зернам положительный заряд. Под непосредственным воздействием этих ионов на поверхности частиц упорядочиваются молекулы ПАВ и воды, создавая вместе с ионами адсорбционную оболочку вокруг зерен. Наличие положительных зарядов на таких адсорбционных комплексах (известняк —катионы — ПАВ — вода) приводит к тому, что вокруг них ориентируются отрицательно заряженные глинистые частицы и ионы 8042-, НСО3-, тоже предварительно адсорбировавшие на себе молекулы ПАВ и воды. Какая-то часть ионов Ыа+, К+, Mg +, Са2+ и 5042-, НСО3- остается в гидратированном виде в жидкой фазе. Таким образом, в суспензии действуют силы электростатического притяжения и отталкивания крупных адсорбционных комплексов (известняк —катионы —ПАВ — вода), мелких катионов и анионов, дипольные взаимодействия между униполярными комплексами, водородная связь между молекулами воды. Свободная же вода, разделяющая все частицы друг от друга, обеспечивает текучесть суспензии. [c.286]

    Попробуем проследить, что будет, если для завершения валентного уровня добавить нгдостающее количество электронов. Образующаяся при добавлении первого электрона заряженная частица (ион) будет обладать отрицательным зарядом. Вследствие отталкивания одноименных зарядов, добавление каждого следующего электрона будет проходить все более сложно и требовать все больших энергетических затрат. Но ведь можно получить частицу с завершенными уровнями другим путем Затраты энергии на удаление одного электрона из аггома с малым значением энергии ионизации значительно меньше. Образующаяся при этом частица также будет заряжена (положительно), что осложнит отрыв каждого последующего электрона. Однако если число электронов на внешнем уровне мало, то для получения полностью завершенных уровней с внешнего уровня можно удалить все электроны. Энергетические затраты при этом будут значительно меньше, чем при присоединении большого количества электронов, ведь сила взаимодействия зарядов, которую для этого нужно преодолеть, прямо пропорциональна величине заряда. Поэтому выполняется принцип деньга деньгу тяне . [c.51]

    Имеется обзор [195] по взаимодействию поликремневой кислоты, как агента коагуляции, с другими коллоидами. Поликремневые кислоты вызывают коагуляцию положительно заряженных коллоидных частиц при низкой концентрации последних, однако при избытке таких частиц может произойти изменение заряда на обратный, и система снова стабилизируется. Специфические взаимодействия между частицами могут превысить величину электростатического отталкивания, например, отрицательно заряженные полисиликат-ионы мог т вызвать флокуляцию отрицате.дьно заряженных частиц золя бромида серебра. [c.403]

    Этот предельный случай впервые был введен Розенблютол и Ростокером (1960) при исследовании соответствующих уравнений для высокотемпературной плазмы. Плазмой называется состояние вещества за пределами атомарной газообразной фазы. Когда атомарный газ нагревается выше некоторого предела, появляется механизм, который непрерывно поглощает кинетическую энергию хаотического движения. Это подобно энергии диссоциации в жидкости с полукристаллической структурой, которая является как бы каналом для непрерывного поглощения энергии при переходе из жидкого состояния в газообразное. При переходе в плазменную фазу поглощающим каналом является механизм ионизации, и в новой фазе частицами будут положительные ионы и отрицательные электроны. Законы, управляющие поведением плазмы, так же сильно отличаются от законов газообразной фазы, как законы газообразной фазы отличаются от законов жидкой фазы. Силы взаимодействия в плазме — кулоновские. Они отличаются от всех других сил взаимодействия между частицами очень большим радиусом действия. Эти две характеристики — дальнодействие и высокая температура — дают возможность предположить, что Фо/й Т о е и г1п 8" , так что ( оГ п 1кТ 1. Для кулоновского закона взаимодействия [c.143]

    Явления переноса в растворах электролита тесно связаны с взаимодействием молекул и ионов. Соответствующие соотношения и связи сложны и многообразны, и их можно выразить посредство1м различных сил. Тем не менее взаимодействие между частицами растворов электролита и явления, вызванные ими, можно классифицировать, разделяя их на две основные группы разной природы. В одной из групп преобладающими силами являются электростатическое притяжение и отталкивание между электрическими зарядами ионов, т. е. кулоновские силы. Эти силы главным образом видоизменяют пространственное распределение растворенных ионов и уменьшают ионную подвижность. Теории, рассматривающие это явление, обычно объединяются под названием электростатическая теория сильных электролитов. В другой группе явлений рассматривается взаимодействие между ионами и молекулами растворителя. С одной стороны, электрическое или какое-либо другое атомное поле ионов нарушает или разрушает структуру воды (или вообще структуру растворителя). С другой стороны, оно связывает молекулы растворителя с ионами более или менее упорядоченными, но обычно не ковалентными связями. Эти явления, называемые сольватацией или в случае воды гидратацией, очень сложны. Однако общее для них состоит в том, что некоторые свойства растворителя, главным образом его структура и, следовательно, его энтальпия, энтропия, мольный объем, сжимаемость и подвижность молекул, изменяются в присутствии ионов. Подвижность молекул воды играет очень важную роль в явлениях переноса, и ионные поля влияют на нее в двух противоположных направлениях подвижность молекул воды возрастает из-за разрушения решетчатой упорядоченной структуры воды и уменьшается под действием упрочняющего структуру ион-дипольного взаимодействия, а также и других вандерваальсовых сил. Если результирующая сила, зависящая от относительной величины этих двух типов влияний, уменьшает подвижность молекул воды, то имеет место положительная гидратация (или, коротко, гидратация), если же результирую- [c.462]

    Тем не менее заслуживает упоминания возможность дальнего взаимодействия между ионами через посредство поляризованных молекул воды в соответствии с концепцией локального гидролиза, принадлежащей Робин-сон г и Харнеду [37]. Если катион поляризует соседнюю с ним молекулу воды, то входящие в эту молекулу атомы водорода становятся более положительными (с более ярко выраженными кислотными свойствами). Такие атомы по сравнению с водородными атомами обычных молекул воды более склонны к образованию водородных связей с анионом, хотя бы через посредство других частиц. Результат столь тонкого взаимодействия между катионом и анионом не отличается от результата прямого взаимодействия между этими частицами — он состоит в стабилизации ионов в той фазе, где указанное взаимодействие при прочих равных условиях легче возникает. Хотя взаимодействия описанного типа не ведут к образованию устойчивых ионных пар, их роль становится весьма ощутимой в концентрированных растворах, что будет ясно из дальнейшего изложения. Подобные взаимодействия между ионами, по-видимому, широко распространены и находят свое отражение в осмотических коэффициентах и коэффициентах активности галогенидов [37], гидроокисей и ацетатов щелочных металлов [38]. [c.183]

    В результате акта перезарядки получается быстро движущаяся нейтральная частица газа (бывшая до этого положительным иойом) и медленно движущийся положительный ион (прел<-няя нейтральная частица). Обмен электронами происходит тем легче, чем ближе друг к другу ионизационные потенциалы взаимодействующих частиц. В процессах перезарядки принимают участие и в результате перезарядки получаются также и отрицательные, а равно и двукратно заряженные ионы [837—841]. [c.240]

    Некоторые исследователи полагают (см., аоример, [232]), что подобное взаимодействие с нуклеофиль ными частицами среды играет существенную роль и в случае заместителей, участвующих в делокализации положительного заряда аренониевых ионов по механизму о, п-сопряжения, в частности, для метильной и других алкильных групп  [c.113]

    Имеются и другие причины образования мелкокристаллических гладких осадков в присутствии коллоидов и комплексных солей. При взаимодействии металлических ионов с коллоидными частицами могут образоваться сложные положительно за(ряженные частицы, причем перемещение этих частиц к катоду происходит катафоретически, с образованием покрытия с совершенно незаметной кристаллической структурой. [c.669]

    Возникновение гетерополярной теории связи было вызвано успехами электрохимии. Берцелиус сделал следующее естественное предположение. Поскольку некоторые вещества выделяются при электролизе на аноде, а другие на катоде, то они должны быть по-разному заряжены. Поэтому прочность молекул должна определяться взаимодействием этих заряженных частиц (Na выделяется на катоде, а С1 на аноде). Следует считать, что молекула Na l имеет такое строение Ма СГ. Положительные ионы могут заменить друг друга Na+ на или s , а СГ на Вг" или NOg. [c.454]

    Поглощение а-частиц. Альфа-частица состоит из двух нейтронов и двух протонов. Таким образом, это довольно тяжелая частица - в 7500 раз тяжелее электрона. Проходя через вещество, такая положительно заряженная частица вызывает сильное притяжение отрицательно заряженных орбитальных электронов атомов, неходящихся вблизи ее траектории. Это притяжение может вырвать один или несколько электронов, а энергия, затраченная на это взаимодействие, уменьшает энергию а-частицы. Электрон, оторванный таким образом, и положительно заряженный ион, оставшийся после отрыва электрона, образуют "перу ионов", а сам процесс называется ионизацией. Взаимодействие между а-частицей и атомами среды, через которую она проходит, не всегда бывает достаточно сильным, чтобы вызветь ионизацию, но оно может вызвать "возбуждение". Возбуждение отличается от ионизации тем, что при возбуждении происходит увеличение энергии орбитальных электронов. Возбуждение и ионизация — это два основных вида взаимодействия, с помощью которых а-частицы (или другие ионизирующие излучения) передают свою энергию веществу, через которое они проходят. [c.12]


Смотреть страницы где упоминается термин Взаимодействие положительных ионов с другими частицами: [c.464]    [c.591]    [c.209]    [c.30]    [c.224]    [c.152]    [c.4]   
Смотреть главы в:

Механизм и кинетика радиационно-химических реакций Издание 2 -> Взаимодействие положительных ионов с другими частицами




ПОИСК





Смотрите так же термины и статьи:

Взаимодействия ионные

Ионов взаимодействие

Ионы положительные

Ток положительных ионов

Частицы взаимодействие

Частицы и другие ионы



© 2025 chem21.info Реклама на сайте