Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Типы мейоза

    У настоящих гаплоидов, имеющих лишь по одной хромосоме каждого типа, мейоз протекает, конечно, весьма неправильно. Пары хромосом, состоящие из двух гомологов, соединенных хиазмами, образоваться не могут, поэтому хромосомы распределяются случайно (фиг. 159) некоторые из них идут к одному полюсу, а другие —к другому. [c.331]

    У животных мейоз происходит непосредственно перед образованием гамет. Иными словами, в клетках каждой особи данного вида на протяжении большей части жизненного цикла содержится 2N хромосом. Такие организмы называют диплоидными. Однако это отнюдь не всеобщее правило у эукариот, размножающихся половым путем. У многих протистов мейоз происходит сразу после образования зиготы, так что эти организмы на протяжении большей части жизненного цикла содержат N хромосом. Такие организмы называют гаплоидными. У многих водорослей и растений, а также у некоторых грибов и простейших происходит чередование гаплоидных и диплоидных поколений. При таком типе жизненного цикла из диплоидной зиготы возникает диплоидная особь, образующая путем мейоза гаплоидные клетки, предназначенные для бесполого размножения. Из каждой такой гаплоидной клетки возникает гаплоид- [c.50]


    Еще один важный смысл упомянутого открытия состоял в том, что половые клетки должны формироваться в результате ядерного Деления особого типа, при котором весь набор хромосом делится точно пополам. Во время мейоза, когда происходит такое уменьшение числа хромосом поведение последних оказалось более сложным, чем предполагали раньше. Поэтому только к началу 30-х годов в итоге огромного числа тщательных исследований, объединивших цитологию и генетику, были твердо установлены важнейшие особенности мейотического деления. [c.15]

    Первичная половая клетка. Тип животной клетки, образующейся в раннем эмбриогенезе, которая способна делиться путем митоза и мейоза в процессе мейоза она образует клетки, из которых затем развиваются яйцеклетки или сперматозоиды. [c.1016]

    Существуют внутриклеточные механизмы с использованием актина и тубулина для перемещения хромосом во время митоза и мейоза, а также структуры типа пузырьков (лизосомы, пероксисомы и другие микротельца ). [c.522]

    У мхов и у других высших растений, у которых гаплофаза развита лучше, чем у цветковых растений, распределение 1 1, зависящее от расхождения аллелей в разные клетки в период мейоза, наблюдалось неоднократно. Из коробочки мха, гетерозиготной по паре аллелей, возникают растения мха двух разных типов, причем в равном количестве. [c.46]

    Следовательно, в настоящее время для цветковых растений и в еще большей мере для мхов и других споровых растений получены четкие данные, доказывающие, что аллели, составляющие пару, расходятся во время мейоза и в результате этого образуется два типа гаплонтов в отношении 1 1. [c.46]

    Какова причина этого и почему получается именно отношение 3 1 Ничего не зная о хромосомах и об их распределении в мейозе, Мендель заключил, что гибриды, по-видимому, образуют два рода половых клеток одни из них содержат аллель Л, а другие аллель а. Согласно Менделю, эти половые клетки образуются у мужских и у женских особей с равной частотой. При оплодотворении женская половая клетка типа Л будет иметь равные шансы соединиться как с мужской половой клеткой, несущей аллель Л, так и с мужской половой клеткой, несущей аллель а. То же самое [c.49]

    Различные типы структурных изменений хромосом по-разному влияют на конъюгацию хромосом во время мейоза, а также на развитие и плодовитость организмов. Остановимся сначала на нехватках и делениях, которые фактически относятся к одной категории изменений, характеризующейся утратой того или иного участка хромосомы. Все такие утраты часто называются нехватками, хотя этот термин в строгом смысле слова обозначает лишь утрату концевого сегмента. Такая утрата, как правило, оказывает значительное влияние, однако это влияние весьма различно в случае гомо- и гетерозигот. У гетерозиготы, обладающей одной нормальной хромосомой и одной хромосомой с небольшой нехваткой, жизнеспособность обычно остается достаточно высокой. Однако чем длиннее утраченный участок, тем в среднем ниже жизнеспособность. Плодовитость у таких гетерозигот обычно понижена. [c.168]


    Типы мейоза. В зависимости от характера жизненного цикла организмов выделены три типа мейотического деления зиготный, гам етный и промежуточный. [c.106]

    Зиготный тип мейоза отличается тем, что мейотическое деление происходит непосредственно после оплодотворения, т. е. в зиготе характерен для аскомицетов, базидиомицетов, некоторых водорослей, споровиков и других организмов, у которых в жизненном цикле преобладает гаплоидная фаза, в то время как диплоидная весьма коротка. [c.106]

    Гаметный тип мейоза характерен для организмов с преобладанием диплоидной фазы в жизненном цикле. Мейотическое деление происходит при развитии генеративных органов — гаметангиев встречается среди простейших и низших растений, например у тех зеленых водорослей, которые размножаются только половым путем. [c.107]

    Промежуточный тип мейоза наблюдается у организмов в период между прохождением стадий спорофита и гаметофита. В данном случае формирование мужских и женских половых клеток происходит в органах размножения диплоидного организма — в материнских клетках микроспор пыльников и материнских клетках макроспор — семяпочках (рис. 60, 61). Промежуточный тип мейоза отличается от гаметного тем, что после мейоза гаплоидные клетки еще несколько раз делятся митотиче-ски в редуцированной гаплофазе. Встречается у высших растений. [c.107]

    Какой бы механизм рекомбинации ни был предложен, в нем всегда должно быть учтено явление генной конверсии, или нереципрокной рекомбинации [220]. Это явление впервые было обнаружено при изучении генетики грибов, у которых можно отдельно исследовать каждый из четырех гаплоидных продуктов мейоза (тетрадный анализ, гл. 1, разд. Г, 2). Иногда вместо обычного менделевского отношения 2 2 для распределения генов в случае гетерозиготного локуса в потомстве наблюдали отношение 3 1. Это означает, что в одной из рекомбинантных. хромосом произошел возврат к родительскому типу. Механизм, лежащий в основе этого явления, может быть связан с неправильным спариванием оснований в гетеродуплексных участках. Чаще всего в точке,. [c.286]

    Нейроспора может размножаться и посредством гаплоидных спор — конидий. Гаплоидные мицелии представлены двумя типами, и конидии или мицелии одного типа способны оплодотворять клетки другого типа, (находящиеся в специальном образовании — протоперитециуме) с образованием зигот. Последние немедленно проходят мейоз и митоз, форми-. руя восемь аскоспор. [c.47]

    ДНК хранит наследственную информацию. Подтверждением этого служит явление трансформации, наблюдаемое у бактерий и открытое также в ьсультуре клеток человека. Сущность явления заключается в превращении одного генетического типа клеток в другой путем изменения природы ДНК. Так, удалось получить штамм капсулированных и вирулентных пневмококков из исходного штамма, не обладающего этими признаками, путем внесения в среду ДНК, выделенной из капсулированного (и вирулентного) штамма. С нуклеопротеинами и соответственно нуклеиновыми кислотами непосредственно связаны, кроме того, такие биологические процессы, как митоз, мейоз, эмбриональный и злокачественный рост и др. [c.86]

Рис. 20.7. Неполное сцепление. В данном примере 20% (т. е. 0,1 + 0,1 = 0,2) потомков имеют генотипы, сформировавщиеся в результате рекомбинации(й) между локусами и в процессе мейоза. Частота рекомбинаций не зависит от генотипов родителей. Родитель, гомозиготный по двум рецессивным признакам, производит только один тип гамет даже в случае рекомбинации. В анализирующем скрещивании рекомбинантные продукты мейоза проявляются у потомков фенотипически. Рис. 20.7. <a href="/info/200267">Неполное сцепление</a>. В данном примере 20% (т. е. 0,1 + 0,1 = 0,2) потомков имеют генотипы, сформировавщиеся в <a href="/info/1394602">результате рекомбинации</a>(й) <a href="/info/1354004">между локусами</a> и в <a href="/info/1748341">процессе мейоза</a>. <a href="/info/33362">Частота рекомбинаций</a> не зависит от генотипов родителей. Родитель, гомозиготный по двум <a href="/info/103201">рецессивным признакам</a>, производит <a href="/info/1728206">только один</a> тип гамет даже в случае рекомбинации. В <a href="/info/1277077">анализирующем скрещивании</a> рекомбинантные продукты мейоза проявляются у потомков фенотипически.
    Нельзя, однако, говорить о полном отсутствии полового процесса у несовершенных грибов. У них, так же, как у базидиомицетов или у других аскомицетов, доказано наличие парасексуального процесса. Плазмогамия, кариогамия и мейоз имеют место и у них, но не в определенных участках вегетативного тела и не на определенных стадиях развития. В норме первичный мицелий несовершенных грибов бывает гомокариотическим, т. е. содержит ядра только одного типа. В результате объединения протопластов, содержащих ядра разного типа, возникают гетерокарионы. Введенное в мицелий чужое ядро размножается, и образовавшиеся дочерние ядра распространяются по мицелию. Время от времени происходят кариогамия и мейоз. Таким образом, парасексуаль-ный цикл обеспечивает примерно столь же эффективную рекомбинацию ядерного материала, как и истинный половой процесс. [c.75]

    Цикл полового размножения включает чередование гаплоидных поколений клеток, каждая из которых имеет одиночный набор хромосом, с диплоидными поколениями, где клетки обладают двойным хромосомным набором. Смешивание геномов происходит благодаря слиянию двух гаплоидных клеток, из которых образуется одна диплоидная. В свою очередь новые гаплоидные клетки образуются из диплоидных в результате деления особого типа, называемого мейозом, при котором гены двойного набора заново перераспределяются между одиночными наборами (рис. 14-2). Генетичестя рекомбинация хромосом в процессе мейоза приводит к тому, что каждая клетка нового гаплоидного поколения получает новое сочетание генов, происходящих частично от одной родительской клетки предыдущего гаплоидного поколения и частично от другой. Таким образом, благодаря циклам, включающим гаплоидную фазу, слияние клеток, диплоидную фазу и меноз, распадаются старые комбинации генов и создаются новые. [c.7]


Рис. 14-10. Схема, иллюстрирующая два основных механизма перераспределения генетического материала во время мейоза. Оба механизма увеличивают наследственную изменчивость организмов, размножающихся половым путем. А. У организма с и хромосомами в результате независимого расхождения отповских и материнских гомологов в первом делении мейоза может получиться 2 различных гаплоидных гамег. В данном случае п = 3 и может быть 8 различных типов гамет. В. В профазе I мейоза происходит кроссинговер-гомологичные хромосомы обмениваются участками, что ведет к перераспределению генов внутри отдельных хромосом. Рис. 14-10. Схема, иллюстрирующая два <a href="/info/351647">основных механизма</a> <a href="/info/1351547">перераспределения генетического</a> материала во <a href="/info/1356456">время мейоза</a>. Оба механизма увеличивают <a href="/info/278091">наследственную изменчивость</a> организмов, размножающихся <a href="/info/1748340">половым путем</a>. А. У организма с и хромосомами в <a href="/info/208028">результате независимого</a> расхождения отповских и материнских гомологов в <a href="/info/1355109">первом делении мейоза</a> может получиться 2 различных гаплоидных гамег. В данном случае п = 3 и может быть 8 <a href="/info/25662">различных типов</a> гамет. В. В профазе I <a href="/info/1624184">мейоза происходит</a> <a href="/info/591540">кроссинговер-гомологичные хромосомы</a> обмениваются участками, что ведет к <a href="/info/1748344">перераспределению генов</a> <a href="/info/1409039">внутри отдельных</a> хромосом.
    У самок имеются две Х-хромосомы, которые конъюгируют и расходятся тах же, как другие гомологи. Однако самцы обладают одной X- и одной У-хро-мосомой, и эти хромосомы должны конъюгировать во время первой метафазы, чтобы сперматозоиды содержали либо Х-, либо -хромосому, но исключалось наличие или отсутствие в них сразу обеих половых хромосом. Требушая конъюгация становится возможной благодаря наличию небольшого участка, где имеется гомология между половыми хромосомами X и У эта гомология позволяет им спариваться во время первой профазы мейоза. Таким образом гарантируется правильное расхождение X- и У-хромосом в анафазе и образование спермиев только двух типов одни содержат У-хромосому и дают начало эмбриону мужского пола, а другие-Х-хромосому и дают начало эмбриону женского пола. [c.26]

    В гл. III подчеркивалось, что в мейозе гомологичные хромосомы от отца и от матери (у самооплодотворяющихся организмов — от мужской и женской половых клеток) сочетаются парами и что только одна из хромосом каждой пары попадает в гамету. Если особь гетерозиготна по одной паре аллелей А-а), то это означает, что одна из хромосом данной пары несет ген А, а другая — ген а. Отсюда следует, что в среднем одна половина гамет будет содержать хромосомы с геном А, а другая половина — хромосомы с геном а. Если мы имеем дигибриды АаВЬ, у которых две пары аллелей находятся в разных хромосомах, то аллели А-а и В-Ь распределятся в половых клетках независимо друг от друга. Это уже обсуждалось выше (см. стр. 33 и фиг. 8) и еще раз представлено на фиг. 29, где показано также распределение хромосом у моно-и тригибридов. Если допустить, что гены А w В лежат в черных хромосомах, а гены а и 6 — в соответствующих белых хромосомах, то распределение хромосом по типу / приведет, очевидно, к образованию гамет АВ и аЬ. Однако столь же часто распределение хромосом между гаметами будет происходить и по типу //, что приведет к образованию гамет АЬ и аВ. Таким образом, у дигибрида в среднем с одинаковой частотой образуются гаметы четырех типов. [c.83]

    Если мы имеем дело с тригибридом АаВЬСс, у которого все три пары аллелей расположены в разных парах хромосом, то легко представить, что в этом случае возникнет 8 различных типов гамет. В первой метафазе мейоза в среднем с одинаковой частотой будут наблюдаться 4 типа распределения хромосом. Каждое распределение приведет к образованию гамет двух типов (фиг. 29). В случае гетерозиготности по четырем различным парам генов, расположенным в разных хромосомах, возможны 8 типов распределения хромосом в метафазе мейоза, которые приведут к образованию гамет 16 различных типов. Ясно, что все сказанное отлично согласуется с разобранной ранее формулой 2", показывающей число [c.83]

    У моногибридов (Ла) в результате разделения гомологичных хромосом образуются с одинаковой частотой гаметы двух типов (Л и а). У дигибрида АаВЬ), у которого две пары аллелей располагаются в разных парах хромосом, возможно два различных типа распределения хромосом в первой метафазе мейоза. [c.84]

    В мейозе у самок две Х-хромосомы конъюгируют, образуя пару, и поэтому каждая яйцеклетка содержит одну Х-хромо-сому. У самцов в мейозе Х-хромосома конъюгирует с -хро-мосомой. Хотя эти хромосомы различны, однако определенная часть Х-хромосомы соответствует определенной части У-хромосомы, и между этими гомологичными сегментами происходит конъюгация. В результате такой конъюгации образующиеся мужские половые клетки содержат в одном случае Х-, а в другом У-хромосому. Эти два типа мужских половых клеток образуются с равной частотой. Поэтому яйца самки, которые все содержат Х-хромосому, с равной вероятностью могут быть оплодотворены как сперматозоидом с Х-хромосо-мой, так и сперматозоидом с У-хромосомой. Яйцо, оплодотворенное сперматозоидом с Х-хромосомой, будет, таким образом, содержать две Х-хромосомы (X -Ь X) и разовьется в самку, а при оплодотворении сперматозоидом с У-хромосомой — одну X- и одну У-хромосому и разовьется в самца (X -Ь У). В пояснение этого простого, но чрезвычайно важного способа определения пола приведена схема на фиг. 48. [c.126]

    А. Фотография метафазной пластинки соматической клетки с 46 хромосомами. Б., Идио-грамма хромосомного комплекса, т. е. схема, показывающая относительную длину разных хромосом и их разделение центромерой на доа плеча (центромера показана белым) Все хромосомы можно разделить по размерам на 7 групп. Помимо 22 обычных хромосомных типов, имеющихся как у мужчин, так и у женщин (1—22), на схеме представлены также половые хромосомы (X и V). Подсчет и классификация хромосом производятся согласно классификации, рекомендованной конференцией в Денвере (196Э г.). В. Пары хромосом в первой метафазе мейоза. Видна пара половых хромосом (черные), окруженная парами обычных хромосом (белые). Г. Три пары половых хромосом, состоящие из маленькой У-хромосомы и более крупной Х-хромосомы. Д. Та же группа хро.мосом, что и на В, но X- и У-хромосомы разъединились и отошли к противоположным полюсам, тогда как хромосомы, составляющие остальные пары, еще соединены друг с другом. [c.128]

    У некоторых высших грибов половые различия имеют более сложную генотипическую основу по сравнению с описанными выше случаями. Так, у гриба Aleurodis us двудомность зависит от взаимодействия двух разных пар генов. Плодовые тела всегда представляют собой двойные гетерозиготы АаВЬ и мейоз приводит к образованию четырех типов спор и мицелиев АВ, АЬ, аВ и аЬ. [c.140]

    Как мы показали в предыдущей главе, определение пола в большинстве случаев контролируется генотипически либо одной парой генов, либо несколькими разными генами, влияющими на развитие пола. Второй тип встречается чаще при этом нередко все или некоторые гены, определяющие пол, бывают расположены в особых половых хромосомах. Половые хромосомы, регулярно расходящиеся во время мейоза в разные клетки, представляют собой пусковой механизм, определяющий направление развития данной особи (будет ли это самец или самка). [c.142]

    В жизненном цикле нейроспоры преобладает гаплофаза, тогда как диплофаза заканчивается сразу после мейоза и образования так называемых аскоспор. Каждая диплоидная материнская клетка спор образует 8 гаплоидных аскоспор, которые можно выбрать из сумки по одной. При прорастании аскоспор образуется гаплоидный организм, и свойства этого гаплоида проявляются непосредственно, без всяких нарушений, связанных с оплодотворением и доминированием. Доминирование, конечно, может иметь место только у организмов, содержащих по две хромосомы каждого типа. [c.230]

    В гл. XVI МЫ рассказали об инверсиях у Drosophila pseudoobs ura и пришли к выводу, что в каждой популяции могут встречаться инверсии нескольких различных типов, причем гетерозиготы по разным инверсиям отличаются большей мощностью, чем соответствующие гомозиготные комбинации. Здесь мы имеем дело с интересным специальным случаем, когда в инвертированных участках хромосомы сохраняются ненарушенными блоки генов, влияющих на мощность и плодовитость. Добжанский указал, что сохранение связи в подобных генных блоках может обеспечиваться и другим путем. Если, например, хиазмы во время мейоза локализуются в одном или нескольких определенных участках хромосом, то на некоторых других участках перекрест будет происходить очень редко, а то и никогда поэтому такие участки могут стать носителями константных блоков генов. Различные подобные блоки могут в популяции дополнять друг друга, что обеспечит большую мощность гетерозигот по сравнению с соответствующими гомозиготами. От подобных ситуаций не так уж далеко до случаев моногибридного гетерозиса, когда гетерозигота опять-таки превосходит гомозиготы. [c.294]

    В тех случаях, когда скрещиваемые виды имеют одинаковое число хромосом, но конъюгация несколько нарушена вследствие структурных различий, во время мейоза возникают нарушения, сходные с теми нарушениями, которые наблюдаются у гибридов, полученных от скрещивания между видами с разным числом хромосом. В подобных случаях также возникает более или менее выраженная стерильность. Эта стерильность будет иной, чем та, в основе которой лежит ненормальное развитие самих половых органов. Мы различаем гаплонтную и диплонтную стерильность. К стерильности первого типа относятся те случаи, когда гаплонты, т. е. пыльцевые зерна и зародышевые мешки цветковых растений, гибнут вследствие их собственной конституции. Подобная ненормальная конституция является следствием случайного распределения хромосом при мейозе и заключается либо в чисто количественном нарушении хромосомного баланса (например, наличие лишних хромосом), либо в нарушениях баланса, [c.305]

    ААА с 3-7 = 21 хромосомой, то он содержит по три хромосомы каждого типа ai-aj-ai, аг-аг-аг, аз-Вз-аз,. .. 37-87-87. Во время мейоза эти идентичные хромосомы образуют тривален-ты (фиг. 151). [c.323]

    А. Соматический набор хромосом (2/г - 21). Б —Г. Три различные пластинки первой метафазы мейоза Б. 21 хромосома образует б тривалентов + 1 бивалент-f-l унивалент. В. хМакси-мальное число тривалентов (7). Г. 4 тривалента-f-3 бивалента + 3 унивалента. Большинство тривалентов V-образной формы, но имеются также и другие типы соединений между тремя гомологичными хромосомами. [c.324]

    ААВВ вместо АВ. В мейозе наборы АА конъюгировали бы друг с другом с образованием 7 бивалентов, а два набора ВВ давали бы другие 7 бивалентов. Таким образом, мейоз приобрел бы закономерность, давая начало гаметам с 14 хромосомами и конституцией АВ. После оплодотворения, т. е. слияния таких гамет, возникли бы новые особи ААВВ. Иными словами, тип ААВВ явился бы новым видом с 28 хромосомами, который по своему составу представлял бы синтез исходных родительских видов АА и ВВ. Новое звено в этом ряду могло бы возникнуть при скрещивании нового вида ААВВ с третьим видом СС, имеющим 14 хромосом. Тем же уже описанным путем первичный гибрид АВС мог дать начало новому виду с 42 хромосомами ААВВСС. [c.334]

    Все трисомики несколько менее жизнеспособны, чем нормальный тип плодовитость их несколько снижена. В течение профазы и метафазы мейоза лишняя хромосома. конъюгирует с двумя другими гомологичными хромосомами, образуя три-валент (фиг. 172). В первой анафазе две хромосомы каждого тривалента идут к одному полюсу, а третья — к другому. Вследствие этого с равной частотой возникают как женские, так и мужские гаметы с 12 и 13 хромосомами. Пыльцевые зерна с 13 хромосомами не могут конкурировать с нормальными пыльцевыми зернами, несущими по 12 хромосом. Пыльцевые зерна с 13 хромосомами либо совсем не прорастают, либо дают пыльцевые трубки с ненормальным или замедленным ростом. Различные типы трисо.миков ведут себя в этом отношении по-разному, в зависимости от того, какая хромосома представлена в тройном числе. В женских гаметах эффект [c.346]

    В гл. XIII мы уже указывали, что некоторые патологические отклонения от нормальной дифференциации пола связаны с отклонениями в числе половых хромосом. Так, нормальное число хромосом 46 в случае половых хромосом типа ХО будет равно 45, в случае XXX и ХХ — 47 и, наконец, в случае XXXV — 48. Что же касается аутосом человека, то в течение двух последних лет было обнаружено несколько различных типов трисомиков. Так, разные исследователи выяснили, что при болезни Дауна 2п = 47, причем лишняя хромосома— одна из самых маленьких аутосом (22-я). Недавно были описаны трисомики по 17-й хромосоме и по одной из хромосом группы 13—15 (см. фиг. 49,5). В каждом из этих случаев трисомия была связана с характерным спектром нарушений развития и умственной отсталостью. Надо еще выяснить, являются ли лишние хромосомы нормальными или же они несут хромосомные перестройки это удастся установить лишь в том случае, когда станет возможным анализ мейоза у подобных людей. Кажется вероятным, что люди с болезнью Дауна и с другими отклонениями от нормы представляют собой подлинных трисомиков и что их аномальные признаки обусловлены наличием лишних хромосом (см. стр. 346—348). [c.443]

    Гомологичные хромосо.чы. У диплоидных организмов обычно имеется по две хромосомы каждого типа (у полиплоидных организмов — более чем по две). Эти хромосомы считаются гомологичными, если даже они различаются по нескольким генам. Если же между хромосомами имеются структурные различия, то они считаются частично гомологичными. Гомология, помимо внешнего сходства, проявляется также в хорошей способности конъюгировать в мейозе. [c.454]


Смотреть страницы где упоминается термин Типы мейоза: [c.190]    [c.103]    [c.103]    [c.22]    [c.26]    [c.45]    [c.127]    [c.131]    [c.171]    [c.187]    [c.319]    [c.352]   
Смотреть главы в:

Практикум по цитологии растений Изд.4 -> Типы мейоза




ПОИСК







© 2025 chem21.info Реклама на сайте