Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Постоянные и переменные поля

    В последние годы свободные радикалы стали обнаруживать и изучать методом электронного парамагнитного резонанса. Метод заключается в резонансном поглощении энергии переменного высокочастотного магнитного поля парамагнитным веществом, помещенным в постоянное магнитное поле. На экране осциллографа возникают спектры электронно-парамагнитного резонанса (ЭПР) исследуемого парамагнитного вещества. Все свободные радикалы обладают парамагнитными свойствами, но каждый радикал имеет свой характерный спектр. [c.40]


    Механизм взаимодействия капель в постоянном поле такой же, как и в переменном поле. Однако диполь-дипольное контактирование в электростатическом поле усиливается кулоновским взаимодействием частиц, сопровождаемым интенсивным встречным движением капель. В результате улучшается обработка и очистка светлых нефтепродуктов. [c.375]

    Сравнивая скорость слияния капель в неоднородном переменном и неоднородном постоянном электрических полях, видим, что они примерно одного порядка. Следует отметить, что эти скорости значительно выше скорости слияния в однородном электрическом поле. [c.59]

    Подставляя сюда Р (/) из (1.29), получим для постоянного поля у==Р, а для переменного поля с таким же амплитудным напряжением [c.21]

    Тот же самый результат может быть получен, если частота переменного ноля V остается постоянной, а изменяется напряженность постоянного магнитного поля. При изменении напряженности постоянного магнитного поля изменяется частота прецессии ядра и, когда она достигает частоты переменного магнитного поля, происходит резонанс. На практике обычно реализуется именно этот способ. Таким образом, задача анализа обычно состоит в том, чтобы определить напряженность постоянного магнитного поля, при которой наступает ядерный резонанс в переменном поле определенной частоты V. В этом случае частота V равна частоте ЯМР. В табл. 4 приведены значения ЯМР для ядер различных атомов.  [c.38]

    Приборы для изучения ЭПР называются радиоспектрометрами. Спектр ЭПР показывает зависимость интенсивности поглощения энергии исследуемым образцом от величины напряженности постоянного магнитного поля при заданной частоте переменного поля. [c.61]

    На постоянное магнитное поле Земли накладывается переменное магнитное поле, происхождение которого, видимо, связано не только с внутриземными, но и с космическими явлениями. Наблюдения показывают, что переменное магнитное поле Земли меняется [c.141]

    Еслп приложено напряжение переменного тока низкой частоты, один полупериод является таким продолжительным, что система способна перейти в следующее равновесное состояние в каждый момент изменения направления переменного поля. Отсюда следует, что характеристики состояния в поле переменного тока низкой частоты такие же, как и за время г о в поле постоянного тока. [c.388]

    Если парамагнитные частицы находятся в постоянном магнитном поле и на них воздействует переменное электромагнитное поле, то при соблюдении определенных соотношений между напряженностью постоянного поля Н и частотой переменного поля V можно наблюдать поглощение энергии переменного поля. Условием поглощения является равенство величины кванта переменного поля /IV величине АЕ. С учетом (1Х.12) [c.230]


    Введем в уравнения (1Х.18) и (IX.19) члены, учитывающие спин-решеточную релаксацию. Рассмотрим образец, находящийся в постоянном магнитном поле в отсутствие переменного поля. Равновесное распределение спинов по уровням осуществляется благодаря взаимодействию спинов с решеткой. Непрерывно происходят как переходы спинов с нижнего уровня на верхний (при этом тепловая энергия решетки расходуется), так и обратные переходы, сопровождающиеся передачей энергии решетке. Обозначим константы скорости (вероятности за 1 с) переходов ( + )->(—) и (—) ( + ) через а1 и аг соответственно. Тогда, в отсутствие переменного поля [c.233]

    В связи с этим концентрация капель жидкой фазы в центре трубы будет значительно выше. Данная ситуация приведет к возникновению коллективных эффектов, которые проявляются в виде образования движущегося ядра, состоящего из диспергированных капель жидкой фазы. Постоянное парообразование с поверхности капель препятствует их объединению. Между движущимися ядрами преобладает паровая фаза с незначительным содержанием паровой фазы в виде капель. Последние могут переходить как в ядро, так и осаждаться на поверхности трубы в виде кокса. Скорость этого отложения будет пропорциональна концентрации частиц жидкости в паровом пространстве. Таким образом, будет наблюдаться медленное образование коксоотложений, что в конечном итоге приведет к ситуации, когда свободное сечение потока будет соизмеримо с размерами отмеченных выше ядер (коллектива частиц). Для определения размера образующихся ядер можно выдвинуть следующее предположение на каждую каплю жидкой фазы, движущуюся в переменном поле скоростей, [c.262]

    Для электрической ориентации частиц имеется гораздо больше возможностей. Исследования показывают (Толстой, 1955 г.), что анизометрические коллоидные частицы в водных растворах обычно обладают электрическими дипольными моментами, достаточными для того, чтобы за время достижения стационарной ориентации частиц в электрическом поле не произошло заметного разогревания раствора за счет прохождения через него тока (при надлежащей очистке раствора от электролита). Коллоидные частицы и макромолекулы могут иметь как собственный дипольный момент, определяемый их строением, так и дипольный момент, индуцированный электрическим полем. Если использовать постоянное электрическое поле (или постоянные импульсы напряжения), то ориентация частиц будет обусловлена взаимодействием с полем обоих видов диполей, и вклад от каждого из них в общий эффект выделить нелегко. Автор с сотрудниками (1959 г.) добились ориентации коллоидных частиц (галлуазита, бензопурпурина и многих других веществ в воде) с помощью высокочастотного электрического поля при частоте порядка десятков и сотен килогерц. При этом было пока зано, что влияние собственного дипольного момента, который жестко связан с частицей и заставляет ее колебаться в переменном поле, полностью подавлено из-за инерционности частицы. В этом случае она ориентируется только за счет взаимодействия с полем индуцированного момента, который, меняя направление синхронно с полем, создает постоянный момент силы. Величина этого момента в водных растворах достаточна для ориентации частиц. По-видимому, он возникает за счет поверхностного слоя воды. Если эта гипотеза подтвердится, то данный метод электрической ориентации частиц окажется универсальным для водных растворов. Применение высокочастотных электрических полей помогает значительно ослабить или устранить такие мешающие явления, как электролиз, поляризация и электрофорез, что делает метод особенно перспективным. Если же исследования этим методом дополнить параллельными исследованиями при ориентации в постоянном электрическом поле, то можно оценить величину постоянного диполь-ного момента частиц и найти угол между постоянным и индуцированным дипольными моментами. Например, при изучении частиц, галлуазита выяснилось, что индуцированный момент ориентиро  [c.33]

    Этого же можно добиться изменением напряженности постоянного магнитного поля Яо пр и неизменной частоте переменного поля Я]. [c.269]

    При выключении переменного поля Н, для которого характерна частота V, устанавливается некоторая равновесная намагниченность, перпендикулярная постоянному полю Но. Постоянную времени Т2, характеризующую спад поперечной намагниченности после выключения поля Я1, называют поперечным временем релаксации. По порядку значения она равна или [c.271]

    Из соотношения (7.31) с учетом формулы (7.34) следует, что к постоянном электрическом поле п экспоненциально зависит от температуры. В то же время, как видно из (7.36), в переменном поле т пропорционально частоте V и от температуры практически пе зависит. [c.206]

    Снятие температурно-временных зависимостей удельной электропроводности (величины, обратной удельному сопротивлению) позволяет изучать особенности проявления кинетических и фазовых переходов в полимерах при действии слабых постоянных электрических полей. Еще более перспективно для этих целей измерение температурно-частотных зависимостей диэлектрических потерь и проницаемости в слабых переменных электрических полях. В частности, по проявлению максимумов диэлектрических потерь при определенных температуре или частоте можно судить о возникновении подвижности тех или иных атомных групп или более крупных участков макромолекул. Это дает возможность установить взаимосвязь строения и свойств полимеров, что необходимо для создания требуемых для техники материалов. [c.209]


    Парамагнитные вещества обнаруживают интенсивное резонансное поглощение высокочастотной энергии при строго определенных значениях напряженности постоянного магнитного поля (при перпендикулярной ориентации переменного и постоянного магнитных полей). Это явление получило название электронного парамагнитного резонанса (ЭПР). Электронным парамагнетизмом обладают атомы с нечетным числом электронов, свободные радикалы органических веществ, центры окраски в виде электронов или дырок, локализованных в различных местах кристаллической решетки, металлы или полупроводники, имеющие свободные электроны, ионы переходных металлов и некоторые другие ионы. [c.160]

    Электронный парамагнитный резонанс. Е, К. Завойский в 1944 г., проводя в Казанском университете исследования парамагнитной релаксации на высоких частотах при параллельной и перпендикулярной ориентациях постоянного и переменного магнитных полей, обнаружил интенсивное резонансное поглощение высокочастотной энергии при строго определенных отношениях напряженности постоянного магнитного поля и частоты. Это открытие, широко используемое в настоящее время, известно под названием электронного парамагнитного резонанса. [c.63]

    Если на образец, находящийся в постоянном магнитном поле, подействовать переменным электромагнитным полем частоты V, направленным перпендикулярно к постоянному магнитному полю, то при условии [c.223]

    Магнитное взаимодействие состоит во взаимном притяжении и отталкивании ферромагнитного материала и проводника (катушки) с переменным электрическим током. Из рис. 1.28 можно видеть, что под действием постоянного магнитного поля В ОК намагнитится. [c.67]

    Если на этот образец подействовать переменным магнитным полем с частотой V и направленным перпендикулярно к постоянному магнитному полю, то при выполнении условия [c.204]

    Четкое противоречие полезно, чтобы инструмент прижимался к изделию, и вредно, чтобы инструмент прижимался к изделию. И столь же четкий способ преодоления противоречия постоянный прижим абразива заменяют переменным, круг начинает вибрировать, трение уменьшается. Для создания вибрации применяют дополнительное магнитное переменное поле, действующее на ферросуспензию. Чтобы действие магнитного поля было максимальным, частицы суспензии выполняют из материала с магнитострикционными свойствами, т. е. [c.109]

    Для исследования структуры и диэлектрических свойств сорбированной воды применяются различные физические и физико-химические методы, в частности диэлектрический метод. Сущность его заключается в измерении макроскопических характеристик поляризации диэлектрика во внешнем электрическом поле. В постоянном электрическом поле поляризация диэлектрика характеризуется статической диэлектрической проницаемостью Ез, в переменном — комплексной диэле1 трической проницаемостью е = е —ге". Установление связи между экспериментально определяемыми характеристиками е , е, г" и молекулярными параметрами диэлектрика является основной задачей теории диэлектрической поляризации [639, 640]. [c.242]

    Для наложения электрического поля в точках фазового перехода нами была со )дана приставка к высокочастотному генератору, изображенному на рис. 10, которая позволяет получать постоянное электрическое и переменное электромагнитное поле напряжением до 20 кВ. Частота переменного поля офаничива-ется возможностями низкочастотного выхода и составляет 0,7-120 кГц. [c.27]

    Сущность действия переменного электрического поля на эмульсию заключается во взаимном притяжении поляризуемых под влиянием поля капелек воды и их слияния в более крупные капли, быстро оседающие под действием силы тяжести. Основное же действие постоянного электрического поля заключается в движении капель воды вдоль силовых линий поля, что обусловлено избыточными электрическими зарядами капель (электрофорез), а также неоднородностью электрического поля, образуемого вертикальными цилиндрическими электродами. Это приводит к стремительному передвижению капель к электродам, на поверхности которых они скапливаются и под действием силы тяжести стекают вниз. В этом способе, применяемом, как правило, для малообводненных эмульсий, в которых капельки воды расположены сравнительно далеко одна от другой, силы взаимного притяжения капель играют второстепенную роль. [c.36]

    В переменном электрическом поле проводящая капелька также поляризуется и вытягивается в эллипсоид вращения, как и в постоянном. Однако при этом внутри капельки тоже имеется определенное переменное поле, изменяющееся в соответствии с изменениями вцеишего поля. По мере изменения величины и направления внешнего поля ионы в капельке то выходят на ее поверхность, то уходят с нее вглубь, стремясь нейтрализовать поле внутри капельки. Выходу ионов на поверхность капельки сопутствует ее вытягивание, уходу их в глубь капельки - ее возвращение к сферической форме. [c.50]

    Как показьшает многолетний опьгг использования разных электрических полей, эффективность разрушения различных эмульсий зависит не только от характера этих полей и технологических условий их применения, но и от природы самих эмульсий. Так, целесообразность применения постоянного или переменного электрических полей для обезвоживания топлив сильно зависит от электропроводности последних. Для легких топлив, отличающихся малой электропроводностью, например для дистиллятов, очень эффективным оказьшается постоянное электрическое поле. Для тяжелых же топлив, характеризующихся высокой электропроводностью, т. ё. для нефтей, тяжелых дистиллятов и остаточных топлив, более целесообразно применять переменное электрическое поле [53]. Поэтому во всех электродегидраторах, предназначенных для обезвоживания нефти, создается переменное электрическое поле. Напряженность поля зависит от конструкции аппарата и может варьировать в пределах 1-3 кВ/см.  [c.60]

    О процессах взаимодействия электрического поля с модельными диэлектрическими системами в постоянном и переменном полях (частота 50 Гц) можно судить по деформапдш и скорости движения непроводящих капель в электрическом поле. Дополнительно можно применять метод автоколебания макрозаряда. Указанные характеристики определяют в электрофоретической ячейке с плоскопараллельными электродами (никелевые или стальные), представляющей собой копию ячейки С. Као и Ф. Остерли, которые экспериментально установили, что на середине ячейки в области ( 0,4—0,5) см местное электрическое поле однородно. [c.22]

    Поскольку силы взаимодействия поляризованных частиц загрязнений пропорциональны Е , предполагалось, что при вытянутой форме ассоциатов и близких расстояниях между ними характер сближения будет диполь-ным. Однако, как видно из приведенных выще данных, зффективность разделения в переменном поле оказалась намного ниже, чем в постоянном. Это связано с тем, что в постоянном электрическом поле возможно злектрофоретическое концентрирование частиц и капель, после чего поляризационная коагуляция может протекать как в первичном, так и во вторичном потенциальном минимуме. [c.95]

    С помощью уравнений ( .15), (У.18) и (У.62) можно сделать количественную оценку частотной зависимости удельной электропроводимости в эмульсиях В/М. На начальной стадии действия напряжения постоянного тока, что равносильно действию переменного поля высокой частоты, величина заряда проводимости, возникающего, в основном, внутри капель воды (рис. У.55, стадия А, система В/М), увеличивается ео временем довольно быстро. Это приводит к большому значенню наблюдаемой электропроводности, как видно из уравнений (У.18) и ( .15). При I сс (рис. У.55, стадия С, система В/М), т. е. при низких частотах, распределение заряда о внутри сферических частиц достигает состояния равновесия и уже дальнейшего возрастания у. со временем не наблюдается. В результате вся система па стадии С имеет низкие значения х. нри условии, что окружающая непрерывная фаза имеет низкую удельную электропроводность. [c.388]

    Если к такой системе ориентированных спинов приложить пере-1енное поле, магнитная компонента которого перпендикулярна постоянному магнитному полю, то при частоте переменного поля V, удовлетворяющей условию резонанса Ь> = происходят ин- [c.24]

    Явление импульсного ЯМР [1] состоит в изменении суммарной ядерной намагннченностн образца, помещенного одновременно в однородное постоянное магнитное поле и импульсное радиочастотное магнитное поле соответствующей частоты. Пре-цесспрующий вектор макроскопичсскоп ядерной намагниченности индуцирует в приемной катушке переменное напряжение, которое пропорционально концентрации исследуемых ядер н является функцией продольного времени (спин-решеточной) релаксации Ti и поперечного времени (спин-спиновой) релаксации T a. Из параметров сигнала ЯМР можно установить а) вид ядер — из напряженности магнитного поля и резонансной частоты б) число ядер, дающих вклад в резонанс,— из амплитуды сигнала в) связь между ядрами и их окружением и молекулярную подвижность — пз времен релаксации. [c.100]

    При наложении переменного поля Я], для которого характерна частота v, возникает некоторая намагниченность, перпендикулярная постоянному полю Яо. Скорость установления этой намагниченности характеризуется поперечным временем релаксации хг, которое по порядку величины равно (уАЯ1/2) или (уАЯ ) . Следовательно, Хг (называемое также спин-спиновым временем релаксации), как и ширина линии, определяется магнитным дипольным взаимодействием ядерных спинов. При сильном сужении линии ЯМР полимеров (при высоких температурах) Тг стремится к Ть [c.216]

    Рассмотрим сначала действие одиночного импульса высокочастотного поля Длительностью т на систему ядерных магнитных моментов, поляризованных сильным постоянным магнитным полем Яо. Импульс перпендикулярного Яо переменного поля резонансной частоты отклоняет результирующий вектор ядерной намагниченности М от равновесного направления, совпадающего с направлением Яо, на угол, определяемый при т<Ст1, Т2 длительностью импульса и амплитудой высокочастотного поля. После прекращения действия импульса вектор М свободно прецессирует вокруг направления Яо с ларморовой частотой vo= у (2я) Яо, постепенно возвращаясь к равновесному положению (рис. 8.2). [c.220]

    Для возбуждения переходов на образец, помещенный в постоянное однородное магнитное поле, необходимо воздействовать переменным магнитным полем Bv = B°v os(2лv/- -6), сравнимым по энергии с зеемановских уровней системы. Резонансное поглощение электромагнитного излучения происходит при условии, что вектор осциллирующего магнитного поля перпендикулярен направлению постоянного магнитного поля 8,-1 В и для рассматриваемой двухуровневой системы удовлетворяется равенство [c.11]

    Магнитные стали используют для изготовления постоянных магнитов и сердечников магнитных устройств, работающих в переменных полях. Для постоянных магнитов применяют высокоуглеродистые стали, легированные хромом или вольфрамом. Они хорошо намагничиваются и длительное время сохраняют остаточную индукцию. Сердечники магнитных устройств изготовляют из низко-углеродистых (менее 0,005% С) сплавов железа с кремнием. Эти стали легко пе-ремагничиваются и характеризуются малым значением электрических потерь. [c.629]

    Электродинамическое взаимодействие состоит в позбуждении в токопроводящем материале вихревых токов, которые затем взаимодействуют с постоянным магнитным полем и вызывают колебания электронного газа , а это, в свою очередь, приводит к возбуждению колебаний атомов, т. е. кристаллической решетки материала. На рис. 1.28 вихревые токи, индуцируемые в ОК катушкой 2 с переменным током, направлены перпендикулярно плоскости чертежа, а силы их взаимодействия с магнитным полем — параллельно поверхности ОК- В результате в ОК возбудится поперечная волна. Обратный эффект состоит в возбуждении вихревых токов в металле, колеблющемся в постоянном магнитном поле под действием упругих волн. Эти вихревые токи индуцируют переменный ток в катушке 2, которая в данном случае служит приемником. [c.68]

    Спектр ЭПР получают, варьируя напряженность постоянного магнитного поля Я и не изменяя частоту переменного поля V, т. е. энергию Ну. Если построить график зависимости энергии резонансного поглощения от напряженности постоянного магнитного поля д 1вН (рис. 8.10, а), то получится кривая с максимумом, проекция которого на ось абсцисс дает величину резонансной энергии постоянного поля д 1вНг, а высота — величину резонансной [c.204]


Библиография для Постоянные и переменные поля: [c.208]   
Смотреть страницы где упоминается термин Постоянные и переменные поля: [c.26]    [c.36]    [c.58]    [c.18]    [c.231]    [c.31]    [c.117]    [c.266]    [c.214]    [c.12]    [c.223]    [c.248]   
Смотреть главы в:

Расчет и проектирование экспериментальных установок -> Постоянные и переменные поля




ПОИСК





Смотрите так же термины и статьи:

Диэлектрическая постоянная в переменном поле, уравнение

Диэлектрическая постоянная в переменном поло, уравнение

Парамагнитные частицы в постоянном магнитном и переменном электромагнитном полях

Постоянный и переменный ток



© 2024 chem21.info Реклама на сайте