Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Парамагнитный резонанс для исследования реакций

    Огромное количество химических реакций, в том числе большое количество технологически важных химических процессов, осушествляется с участием свободных радикалов. Химически весьма активные свободные радикалы играют важнейшую роль в цепных реакциях. Современную химическую кинетику невозможно представить без учета свободных радикалов. И тут уместно сказать, что именно в Казани было открыто явление электронного парамагнитного резонанса, на основе которого созданы методы исследования свободных радикалов. Это открытие было сделано в 1944 г. доцентом Казанского университета Завойским Е. К. [c.15]


    Действие сил растяжения вдоль оси молекулярной связи К1—Кг проявляется в ослаблении кажущейся энергии ее образования и, таким образом, способствует увеличению вероятности разрыва связи. Если ослабление кажущейся энергии связи существенно, то механическое воздействие можно считать основной причиной деструкции цепи. Поскольку разрыв цепной молекулы сопровождается образованием органических радикалов, а последующее появление неспаренных свободных электронов регулируется механическими силами, то изучение процесса образования радикалов и их реакций дает необходимую с точки зрения молекулярной теории информацию относительно сил, действующих па цепь. Исследования свободных радикалов методом парамагнитного резонанса усиленно развивались в течение последних 30 лет [1, 2]. С тех пор данный метод успешно применялся для объяснения механизма образования свободных радикалов в химических реакциях и под действием облучения видимым и ультрафиолетовым светом, рентгеновским и 7-излучением и облучением частицами [1, 3]. Дополнительно изучались величина фактора спектроскопического расщепления магнитное окружение неспаренного спина свободных электронов и структура свободного радикала. Во всех этих случаях спин свободного электрона действует как зонд, который, по крайней мере временно, присоединяется к определенной молекуле, принимает участие в ее движении и взаимодействует с окружающим магнитным полем. [c.156]

    Огромный вклад в развитие физической химии сделан советскими учеными. Мировой известностью пользуются работы школы Н. С. Курнакова, основателя физико-химического анализа, А. Н. Фрумкина в области электрохимии и электрохимической кинетики, Е. К. Завойского, открывшего явление электронного парамагнитного резонанса. Ведущую роль играют исследования по кинетике цепных реакций, выполненные Н. Н. Семеновым и его учениками, работы по органическому катализу (А. А. Баландин, Н. В. Кобозев, С. 3. Рогинский), исследования П. Л. Лазарева, А. М. Теренина в области фотохимии, В. А. Каргина в физико-химии высокомолекулярных соединений. [c.7]

    Метод электронного парамагнитного резонанса (ЭПР), основанный на использовании явления резонансного поглощения электромагнитных волн парамагнитными частицами в постоянном магнитном поле, успешно применяется для измерения концентрации парамагнитных веществ, исследования окислительно-восстановительных процессов, изучения химической кинетики и механизма химических реакций и т. п. [c.31]


    В учебном пособии в сжатой и доступной форме изложены основы ряда методов, применяемых при исследовании кинетики и механизма химических реакций. Это видимая и ультрафиолетовая спектрофо-тометрия, инфракрасная спектрометрия, люминесценция, хемилюминесценция, электронный парамагнитный резонанс, ядерный магнитный резонанс, газожидкостная хроматография, аналоговые вычислительные машины. [c.2]

    Развитие новых методов исследования (электронный парамагнитный резонанс, радиоактивные изотопы и др.) позволило экспериментально подтвердить ценной механизм реакций окисления углеводородов. [c.101]

    Гомолитические реакции. Как известно, гомолитические реакции сопровождаются разрывом электронных пар в связях молекул исходных компонентов. Таким образом, промежуточные продукты взаимодействия часто представляют собой радикалы. В связи с этим одним из действенных методов исследования подобных реакций в последние годы стал метод электронного парамагнитного резонанса. Метод меченых атомов наряду с ЭПР относится к основным методам исследования гомолитических реакций. [c.147]

    Исследование на моделях с использованием аценафтиле-на и других ароматических углеводородов методом электронного парамагнитного резонанса (ЭПР) в целях определения механизма химических реакций, протекающих на разных стадиях карбонизации, выполнено в [2-16,17]. Как многократно показано, спектры ЭПР полукоксов состоят из синглетных линий без сверхтонкого разрешения, ширина и интенсивность которых определяются температурой нагрева. Для определения промежуточных свободнорадикальных структур, возникающих в карбонизуемой системе при нагревании, аценафтилен и другие соединения разбавлялись в инертном растворителе м-пентафениле, что уменьшало вероятность рекомбинации промежуточных свободных радикалов и позволяло их обнаружить с помощью ЭПР. Результаты анализа спектров ЭПР показали, что при нагрювании возникают свободные ароматические радикалы, которые или взаимно рекомбинируют с выделением водорода, или в реакциях диспропорционирования преобразуются в ароматические фрагменты, или перестраивают свою структуру. При плоской конфигурации образующихся продуктов и достаточной подвижности системы карбонизация проходит через мезофазное превращение с последующим образованием при соответствующих температурах углерода с хорошо выраженной текстурой. [c.48]

    Особое место занимают стабильные радикалы. Помимо их самостоятельной роли они позволяют вести моделирование и играют роль индикатора процесса при изучении механизма химических и биохимических реакций методом электронного парамагнитного резонанса (ЭПР). Применение стабильных радикалов в сочетании с методом ЭПР открывает возможности вести самые различные кинетические исследования и исследования структуры радикалов. [c.5]

    Статья О Рейли вышла в свет в 1960 г. и охватывает литературу до 1959 г. включительно. В последующие годы появился ряд интересных и важных работ по применению метода ЭПР для изучения механизма реакций и получающихся при них продуктов и для исследования катализаторов. Часть этих более поздних работ, опубликованная до 1962 г., обсуждена в монографии Л. А. Блюменфельда, В. В. Воеводского и А. Г. Семенова, Применение электронного парамагнитного резонанса в химии, Изд-во Сиб. отд. АН СССР, Новосибирск, 1962. В этой фундаментальной монографии [c.11]

    Электронный парамагнитный резонанс (ЭПР), открытый Е. К. Завойским (1944), связан с особым поведением в магнитно.м поле неспаренных электронов, обладающих магнитным моментом. В этих условиях возникает возможность электронных переходов, энергия которых относится к микроволновому диапазону спектров. Метод ЭПР получил широкое применение, в частности, для открытия н исследования строения и концентрации свободных радикалов, возникающих в различных химических системах в ходе химических реакций, в процессах полимеризации, в биологических процессах, например под действием радиации, при ферментативном катализе. Чувствительность этого метода чрезвычайно велика. Анализ сверхтонкой структуры спектра ЭПР дает возможность идентифицировать, определять строение радикалов и изменение их концентрации при содержании нх порядка 10 моль/л. [c.89]

    С помощью спектроскопии электронного парамагнитного резонанса можно обнаружить неспаренные электроны и получить полезную информацию о ближайшем окружении электрона. Как правило, химической частицей, содержащей неспаренный электрон, является свободный радикал. Таким образом, в принципе можно идентифицировать свободные радикалы и измерять их в очень малых концентрациях (до 10 моль л) при наиболее благоприятных условиях. Благодаря этому ЭПР получил широкое применение при исследовании реакций полимеров. Этот тип спектроскопии оказывает теперь большую помощь при детальных исследованиях таких процессов, как полимеризация, окисление — восстановление, деструкция, радиационные и фотохимические эффекты и даже вальцевание полимеров. [c.407]


    Многие методы наблюдения быстрых реакций комбинировали с использованием низких температур. Например, была разра-ботана аппаратура, действующая по принципу остановленной струи (см. стр. 55), которая работает при температурах до —120° . Это устройство позволяет наблюдать реакции с временем полупревращения порядка нескольких миллисекунд. Таким образом, интервал скоростей, доступный исследованию, возрастает на четыре порядка и данную реакцию можно исследовать в очень большом интервале температур (стр. 62). Метод остановки реакции (см. стр. 33) был разработан для использования вплоть до —100° . Флеш-метод, методы флуоресцентный, ядерного магнитного резонанса, электронного парамагнитного резонанса и ультразвуковой релаксации также пригодны для работы при низких температурах эти методы имеют то преимущество, что реакцию не нужно начинать смешиванием. [c.31]

    Обычно полагают неопределенность в значении константы скорости около 5%, хотя при автоматическом сканировании и регистрации стандартное отклонение можно уменьшить до 2% или меньше [30]. Контроль температуры можно осуш ествлять примерно от О до 50°. Используемый объем раствора зависит от времени, необходимого для отсчета (табл. 3). Метод можно приспособить для специальных исследований промежуточных соединений, например в ферментативных реакциях, применяя рециркуляцию ([35], стр. 123) затем, кроме обычных свойств, можно исследовать магнитную восприимчивость и электронный парамагнитный резонанс [36]. [c.50]

    Механизм гомолитических реакций, очень трудно поддающихся исследованию обычными методами, в ряде случаев можно изучать, наряду с методом парамагнитного резонанса, также исполь- зуя радиоактивные изотопы [75, 419, 423]. [c.228]

    В целях изучения равновесия, термодинамики и механизма аналитических водных реакций комплексообразования в Лаборатории аналитической химии редких элементов была разработана новая область применения электронного парамагнитного резонанса (ЭПР). Было установлено, что спектры ЭПР парамагнитных ионов в жидких и замороженных растворах зависят от природы лиганда, с которым связан парамагнитный ион. Главное преимущество метода ЭПР перед физико-химическими методами исследования реакций комплексообразования заключается в том, что спектры ЭПР комплексов данного парамагнитного иона с различным числом лигандов различаются. Поэтому можно прямо наблюдать в растворе разные комплексы парамагнитного иона и тем самым исследовать реакции ступенчатого комплексообразования, определять распределение комплексов в зависимости от концентрации лиганда, рассчитывать константы устойчивости. В результате таких исследований был достигнут существенный прогресс в развитии химии ионов в необычных состояниях окисления, особенно химии Мо(У), Сг(У), У(1У), Т1(1П), Ад(П), Еи(П), N (01), Со(П) и др. [c.5]

    Основные научные работы посвящены изучению активных промежуточных частиц (комплексов, возбужденных молекул, свободных радикалов). Применил метод электронного парамагнитного резонанса для исследования радикалов, образующихся непосредственно при радиационном облучении, и установил связь между строением молекул и их радиационной стойкостью. Изучил закономерности делокализации неспаренных электронов в комплексных соединениях и установил общность механизмов сверхтонких взаимодействий в комплексах, радикалах и молекулах. Обнаружил влияние магнитного поля на скорость реакций в растворах. [c.343]

    Научные исследования посвящены преимущественно теоретическим вопросам химии, распространению методов квантовой механики на изучение строения молекул. С целью определения строения молекул исследовал дипольные моменты (1930—1940-е), колебательные спектры (1940—1950-е), электронный парамагнитный резонанс (1950—1960), Применил изотопные методы для изучения механизма реакций и методы диэлектрической поляризации для изучения межмолекулярного взаимодействия. Совместно с Е. А. Шиловым ввел представления об образовании циклических (четырех- и щестичленных) [c.480]

    История закрепления в научных исследованиях теории парамагнетизма нефтяных систем характерна следующими особенностями. Наиболее активные исследования стали возможными после 1944 года, поскольку, в этот год Е.К. Завойским [37], в СССР, был открыт метод электронного парамагнитного резонанса, явившийся прямым методом регистрации свободных радикалов и любых молекул и атомов, содержащих один или несколько неспаренных электронов в электронной оболочке. Ряд монографий был посвящен исследованию свободных радикалов [19, 59, 31, 56, 9, 61, 21, 50] как стабильных, так и возникающих и рекомбинирующих в реакциях, как возбужденных излучениями в твердых телах, так и парамагнитных комплексов переходных металлов, ферромагнетиков и электронов проводимости [97]. Позже Н.С. Гарифьянов и Б.М. Козырев обнаружили в спектре электронно - парамагнитного резонанса (ЭПР) нефтей и битумов сигнал поглощения, что свидетельствовало о наличии в этих веществах парамагнитных молекул [30]. Таким образом, в 1956 г. был открыт парамагнетизм нефтей. К концу пятидесятых годов утвердился тот факт, что парамагнетизм нефтей и нефтепродуктов концентрируется в асфальтенах - в 1958 г. Г.С. Гутовский с соавторами [94] сообщили, что парамагнетизм нефтей концентрируется в асфальтеновой фракции. [c.74]

    Метод электронного парамагнитного резонанса (ЭПР) прочно вошел в повседневную исследовательскую практику многих лабораторий. На него опираются экспериментальные исследования в ряде отраслей физики, химии, биологии, медицины изучение строения сложных молекул, механизма химических реакций, процессов катализа физико-химических превращений, процессов в живых тканях и др. Несомненно, что применение спектроскопии ЭПР в исследовательских работах различных направлений в дальнейшем будет неуклонно расширяться. [c.5]

    С. Как показали исследования с использованием метода электронного парамагнитного резонанса (ЭПР) [194—200], свободные радикалы, образующиеся в результате радиолиза, захватываются твердым веществом при низких температурах, стабилизируются и вступают в реакции лишь при нагревании облученной системы. Область температур, в которой свободный радикал устойчив, зависит от природы этого радикала и состава облучаемого раствора. [c.132]

    Необходимость контроля за нефтепродуктами привела к быстрому развитию масс-спектрометрии. В связи с разработкой во время войны радарной техники были достигнуты успехи и в радиоспектроскопической аппаратуре, что привело к почти одновременному возникновению трех новых методов микроволновой газовой спектроскопии, ядерного магнитного резонанса (ЯМР) и электронного парамагнитного резонанса (ЭПР). До 1945 г. лабораторная техника в органической химии мало отличалась от техники 1895 или даже 1875 г., ныне современные спектроскопические методы революционизировали определение молекулярной структуры как в органической, так и в неорганической химии , — пишут видные американские химики — авторы доклада о фундаментальных исследованиях по химии в США [5, с. 3—41. Эти методы позволяют ныне изучить молекулярную структуру и свойства не только стабильных органических соединений, но и промежуточных продуктов реакции, так же как и самый акт химического взаимодействия. Новые методы могут давать более точную и быструю информацию, чем любые другие физические, физико-химические или химические методы. Для них требуются малые количества вещества, которое часто может быть возвращено химику. Благодаря своей высокой избирательности и чувствительности они незаменимы при анализе сложных смесей и обнаружении примесей, они не влияют на состав смесей таким образом, не нарушают таутомерных, конформационных и других равновесий и позволяют вести контроль за процессом, облегчая кинетические исследования [6, с. 1]. Поэтому-то в истории органической химии ныне должное и почетное место должна занять история применения в ней физических методов исследования. Далее в шести главах мы и рассмотрим в историческом аспекте важнейшие и наиболее актуальные из этих методов в той последовательности, которая подсказывается не только временем их первого применения к органическим соединениям, общностью природы изучаемых ими явлений, но и характером информации, которую они предоставляют. [c.196]

    Применение ряда современных методов исследования, например метода электронного парамагнитного резонанса, позволяющего определять структуру и концентрацию свободных радикалов, образующихся при окислении, термическом, фотохимическом, радиационном, механическом распаде полимеров, метода ядерного магнитного резонанса и других дало возможность изучить механизм старения и стабилизации полимеров н разработать эффективные методы стабилизации различных классов полимеров. Для многих из них предложены меры комплексной защиты от теплового, термоокислительного, светоозонного, радиационного старения. При этом оценка эффективности противостарителей осуществляется не только по активности в химических реакциях, но и по растворимости в полимере, летучести, термостабильности и другим факторам. Полиэтилен, например, хорошо защищается от термоокислительной деструкции в присутствии небольших количеств (0,01 /о) фенольных или аминных антиоксидантов, что важно для его переработки. При эксплуатации полиэтилен достаточно стабилен, тогда как полипропилен нуждагтся в защите от старения при эксплуатации. Здесь более эффективны такие антиоксиданты, как производные фенилендиаминов. Для защиты полиэтиленовых пленок от действия ультрафиолетового света применяют <5г < -фенолы. Весьма важна проблема стабилизации ненасыщенных полимеров (каучуков), где достаточно эффективны аминные про-тивостарители или их сочетание с превентивными антиоксидантами. [c.273]

    К сожалению, в этом разделе недостаточно рассмотрены возможности эффективного использования в кинетических исследованиях снектроскопи-ческого и масс-спектроскопического методов, а также кинетического метода применения меченых атомов, методов хемилюминесценции, электронного парамагнитного резонанса (ЭПР), раздельного калориметрирования при гомогенно-гетерогенных процессах. Эти методы успешно применяются и получили значительное развитие в СССР. С их помощью получено много сведений о детальном механизме сложных, в частности цепных, реакций. [c.6]

    Химический функциональный анализ далеко не всегда позволяет однозначно установить структуру органических соединений. Некоторые группы дают сходные реакции. Иногда вещества в условиях определения оказываются неустойчивыми. Функциональный анализ не нозволяет судить о составе смесей, числе тех или иных групп и о макроструктуре вещества (простраиствеином строении, структуре кристаллов или жидкости, межмолекулярных взаимодействиях и т, п.). Вследствие этого существенную роль в исследовании строения и свойств соединений играют физико-химические, или инструментальные, методы анализа спектральные, электрохимические, хроматографические, радиометрические и др. Для установления структуры вещества чаще всего используют методы, основанные на взаимодействии вещества или смеси веществ, их растворов с различного вида излучениями. К ним относятся ультрафиолетовая, видимая, инфракрасная спектроскопия, метод люми-иесценцин, оптический и рентгеновский спектральный анализ, рефрактометрия, поляриметрия, метод ядерного магнитного резонанса. На взаимодействии с магнитным полем основан метод электронного парамагнитного резонанса, а последовательно с электрическим и магнитным — масс-спектрометрия. Некоторые из этих методов рассмотрены в посебии. [c.82]

    В настоящее время для постановки и успешного решения такой задачи имеется ряд предпосылок. Во-первых, сейчас уже, по-видимому, с большой вероятностью можно установить, из каких элементарных актов, т. е. реакций с участием свободных радикалов, складывается весь сложный процесс окисления углеводородов. Это является прямым следствием значительной достоверности, которую в результате всего предыдущего исследования приобрел химически детализированный механизм окисления, рассматриваемый в современной литературе. Во-вторых, можно думать, что химия свободных радикалов, и так уже развивавшаяся в последние годы более быстрыми темпами, чем за предшествовавшие два десятилетия, находится в наши дни на пороге еще гораздо более бурного развития. Последнее явится неминуемым результатом возникновения новых, качественно иных и гораздо более тонких, чем прежде, методов идентификации и количественного определения свободных радикалов (масс-спектромет-рии, электронного парамагнитного резонанса и др.). [c.10]

    Другими методами, которые можно привлечь к исследованию механизмов реакции, являются изучение короткоживущих промежуточных продуктов реакции с помощью масс-спектрометри№ и электронного парамагнитного резонанса. [c.149]

    В настоящее время доказано, что взаимодействие уротропина с фенольной смрлой переводит смолу в резит. Этот процесс, по крайней мере в одной из стадий, протекает по свободнорадикальному механизму. Эти выводы подтверждены термомеханическими исследованиями, введением, акцепторов свободных радикалов и изучением спектров электронного парамагнитного резонанса Уротропин, как ускоритель серной вулканизации, также вступает в реакцию с каучуком с образованием химических связей Следовательно, уротропин может явиться промежуточным звеном, способствующим созданию единой пространственной каучуко-смоляной системы. Следует отметить, что под влиянием уротропина непрозрачный вулканизат превращается в прозрачный, что косвенно подтверждает выдвигаемую гипотезу. [c.138]

    Особенно тонкое исследование электролитического восстановления четвертичных аммониевых соединений было недавно описано Мейеллом и Бардом [13]. Были исследованы три соединения хлорид анилина, хлорид диметиланилина и бромид бензилдиметиланилина. Для первых двух соединений полярографические и кулонометрические данные соответствовали друг другу и указывали на одноэлектронный процесс, определяющий скорость реакции. Однако кулонометрическое восстановление бромида бензилдиметиланилина дало для кажущегося числа фарадеев на 1 моль значения 1,4—2,0 в зависимости от начальной концентрации и природы растворителя. Исходя из рассмотрения кривых ток — время, влияния концентрации и фактического анализа раствора, авторы высказали предположение, что механизм восстановления включает в себя образование свободных радикалов бензила этот вывод был в дальнейшем подтвержден данными электронного парамагнитного резонанса. [c.20]

    РАДИОСПЕКТРОСКОПИЯ, совокупность методов исследования состава, строения и реакц. способности в-в, к-рые основаны на явлениях резонансного поглощения или испускания энергии радиочастотного электромагн. поля. В магн. Р. регистрирукл поглощение магн. компоненты поля, обусловленное переходами между уровнями энергии, к-рые возникают при взаимод. магн. моментов электронов или ядер с вкеш. пост. магн. полем (см. Электронный парамагнитный резонанс, Ядерный магнитный резонанс). Магн. переходы могут наблюдаться и в отсутствии внеш. магя. поля. Так, в твердых телах ЯМР в основном обусловлен прямым взаимод. между магн. дипольными моментами ядер, а для ядер со спинами / > /г — также взаимод. их электрич. квадрупольного момента с неоднородными электрич. мол. полями (см. Ядерный квадрупольный резонанс). [c.491]

    Бэмфорд и Барб [59] также приписали ускорение реакции у.мень-шению скорости обрыва, но предположили другую причину уменьшения скорости. Они считают, что полимерные частицы аггреги-руются после осаждения и окклюдируют растущие полимерные радикалы вместе с мономером. В полимерах, абсорбировавших мономер (и набухших), захваченный радикал может продолжать расти, как при эмульсионной полимеризации, и вероятность обрыва сильно уменьшается. Исследование методом электронного парамагнитного резонанса (ЭПР) доказало, что полимерные частицы захватывают радикалы [60]. Бэмфорд и сотр. [61] применили метод ЭПР для измерения концентраций радикалов, захваченных полимерными частицами. Бэмфорд и Дженкинс [62] использовали реакцию захваченных радикалов со стабильным свободным радикалом а, а -дифенил-р-пикрилгидразилом, чтобы оценить количество захваченных радикалов, и показали, что эти радикалы могут инициировать быструю полимеризацию при нагревании этой системы до 60°. [c.425]

    Методы, основанные на этих явлениях, должны быть особенно полезны для исследования реакций с константами скоростей второго порядка от 10 до 10 молъ -сек . Обсуждение процессов, вызывающих эти явления, и методов их экспериментального обнаружения можно найти в ряде недавно появившихся книг и обзоров [И, 136, 262]. Теоретически ядерный магнитный резонанс (ЯМР) должен обнаруживаться у любого элемента, имеющего естественный изотоп со спином ядра, не равным нулю. Наиболее важным примером является при этом водород. С другой стороны, парамагнитный резонанс (ПМР) требует наличия в молекуле песпаренного электрона. ЯМР наблюдается при радиочастотах, а ПМР — при микроволновых частотах, а поэтому ЯМР требует менее сложного оборудования. Сейчас имеются продажные приборы для обоих методов. [c.93]

    Исследование разреженных пламен методом электронного парамагнитного резонанса Азатяном, Налбандяном и Оганесяном [96] было использовано для установления места атаки атомарным кислородом сложных молекул. Была изучена реакция 0+СНз0Н = = ОН + СНзОН или О + СН3ОН = ОН + СН3О. [c.204]

    В противоречие с ранними исследованиями [185], было установлено, что в присутствии воздуха радиационная деструкция ПММА замедляется [195, 199]. Для объяснения этого факта были высказаны различные предположения, связывающие действие кислорода или с образованием перекисных связей между первоначально образующимися при разрыве главных цепей фрагментами макромолекул [199], или с возникновением — независимо от реакций деструкции — перекисных поперечных связей [195], или с захватом молекулами кислорода электронов с образованием молекулярных ионов 00 и снижением вследствие этого скорости деструктивных процессов, протекающих с участием электронов [200]. Hi)HMepHO аналогичный механизм, связанный с захватом электронов, был предложен для объяснения конкурирующей роли кислорода при облучении ПММА, содержащего различные красители [201]. Наличие в облученном на воздухе ПММА групп, распад которых ускоряется в присутствии следов /прет-бутилкатехина, гидрохинона и диме-тиланилина и которые придают полимеру способность инициировать полимеризацию винильных соединений, в известной мере подтверждает гипотезы, приписывающие основную роль в рассматриваемом явлении наличию перекисей [193, 194, 196, 199]. При соприкосновении с воздухом ПММА, предварительно облученного в вакууме, наблюдается наложение асимм(зтричного спектра электронного парамагнитного резонанса, обусловленного перекисным радикалом, на симметричный спектр ЭПР исходного радикала, состоящий из пяти линий (плюс четыре плеча) [202]. Из спектров ЭПР было найдено, что скорость гибели радикалов, непосредственно образовавшихся под пучком, так же как и вторичных перекисных радикалов, подчиняется кинетическим уравнениям второго порядка. Механизм реакции, по которой перекисные радикалы могут образовать перекисные поперечные связи, предположение о существовании которых было высказано, неясен. Недавно была исследована кинетика снижения молекулярного веса облученного ПММА в период последействия и обсуждены некоторые возможные механизмы этого процесса [203]. [c.102]

    С целью выяснения строения продуктов взаимодействия, получающихся по реакции алюминийалкилов и бисцикло-пентадиенилтитандиг алогепидов, Шиловым с сотрудниками были проведены исследования с применением метода электронного парамагнитного резонанса [46, [c.117]

    При протекании суммарных двухэлектронных реакций электроокисления или электровосстановления Часто образуются свободные радикалы, обладающие намного более высокой стабильностью в апротонных, чем в протонодонорных растворителях. В последних свободные радикалы мгновенно протонируются и в дальнейшем восстанавливаются (или окисляются) при потенциалах их образования. В классических работах Хойтинка [56, 57] представлены полярографические данные, относящиеся к восстановлению углеводородов в смесях диоксана с водой и чистом диоксане. После этих работ был проведен ряд исследований электроокисления и электровосстановления, часто сочетавшихся с измерениями парамагнитного резонанса. [c.434]

    Дифенилпикрилгидразил представляет собой интенсивно окрашенное в фиолетово-черный цвет соединение, т. пл. 138°, легко растворимое в хлороформе, трудно — в бензоле и почти лера-створимое в спирто раствор], имеют глубокую фиоле-тов ю окраску. Д. легко соединяется со свободными радикалами с образованием сиабоокрашенных соединений. Получил применение как улавливатель свободных радикалов, д.ля измерения скорости инициирования ценных реакций в жидкой фазе (нанр., полимеризации) и для определения выхода свободных радикалов при радиолизе оргаиич. жидкостей. Дифенилпикрилгидразил применяют в качество стандарта при исследовании спектров электронного парамагнитного резонанса. [c.584]


Смотреть страницы где упоминается термин Парамагнитный резонанс для исследования реакций: [c.245]    [c.245]    [c.352]    [c.2]    [c.2]    [c.263]    [c.197]    [c.569]    [c.229]    [c.4]    [c.7]   
Современная химия координационных соединений (1963) -- [ c.93 , c.94 ]




ПОИСК





Смотрите так же термины и статьи:

Реакция исследование

Резонанс парамагнитный



© 2025 chem21.info Реклама на сайте