Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеиновые кислоты гетероциклические основания

    Гетероциклические ядра составляют основу для построения многочисленных гомологических рядов, содержащих углеводородные остатки в виде боковых цепей, а также всевозможные функциональные группы. К гетероциклическим соединениям относятся, кроме упомянутых, также многие другие важные природные вещества. Это, например, алкалоиды — азотсодержащие растительные физиологически активные вещества. Среди них есть и сильные яды (стрихнин, никотин), и важные лекарственные препараты (хинин, резерпин). Гетероциклические ядра составляют основу многих антибиотиков, например пенициллина, тетрациклина витаминов. (витамины группы В п др.). Пуриновые и пиримидиновые основания входят в состав нуклеиновых кислот — материальных носителей наследственности, играющих важнейшую роль в процессах биосинтеза белков. [c.340]


    Мономерными звеньями ДНК и РНК являются остатки нуклеотидов. Нуклеотиды — это фосфорные эфиры нуклеозидов, которые, в свою очередь, построены из остатка углевода — пентозы и гетероциклического основания. В РНК углеводные остатки представлены D-рибозой, в ДНК — 2-1)-дезоксирибозой. Связь между углеводным остатком и гетероциклическим основанием в нуклеозиде осуществляется через атом азота в основании, т. е. с помощью К-гликозидной связи. Таким образом, нуклеозидные остатки в ДНК и РНК относятся к классу N-гликозидов. Как уже отмечалось во Введении, в качестве гетероциклических оснований ДНК содержат два пурина аденин и гуанин — и два пиримидина тимин и цитозин. В РНК вместо тимина содержится урацил. Кроме того, ДНК и РНК обычно содержат так называемые минорные нуклеотидные остатки — производные обычных нуклеотидов по основаниям или углеводному остатку, доля которых в зависимости от вида нуклеиновой кислоты колеблется от десятых процента до десятков процентов. Строение, химическая номенклатура и принятые сейчас сокращенные обозначения нуклеотидов и их компонентов показаны на рис. 2. [c.11]

    Все пять гетероциклических оснований, входящих в состав нуклеиновых кислот, имеют плоскую конформацию. В то же время для остатков рибозы и дезоксирибозы плоская конформация (когда атомы углерода СГ, С2, СЗ, С4 и гетероатом кислорода находятся в одной плоскости) энергетически невыгодна. Среди многочисленных теоретически возможных конформаций этих остатков в полинуклеотидах реализуются только две либо С -эндо-, либо СЗ - [c.22]

    На рис. 3.4 представлены молекулярные диаграммы некоторых наиболее важных таутомерных форм гетероциклических оснований нуклеиновых кислот (свободных оснований и в составе различных производных), полученные Пюльманом с использованием метода Хюккеля . Пользуясь приведенными на молекулярных диаграммах электронными плотностями на атомах, легко рассчитать величины частичных зарядов (6+ или б—) на соответствующих атомах путем вычитания из числа электронов, поставляемых данным атомом в общую л-систему, величины л-электронной плотности на этом атоме. При этом получается более наглядная картина роли данного атома как электроположительного или электроотрицательного центра в молекуле. Соответствующие диаграммы, полученные расчетом по методу Хюккеля, приведены на рис. 3.5 полученные методом самосогласованного поля — на рис. 3.6. Легко видеть, что качественные предсказания, сделанные на основании построения мезомерных структур, подтверждаются и при расчетах методом молекулярных орбиталей в приближении Хюккеля. Среди углеродных атомов ядер пиримидиновых оснований [c.150]


    Пиримидиновые и пуриновые основания, входящие в состав нуклеиновых кислот. Гетероциклические основания пиримидин и пурин входят в состав нуклеиновых кислот, играющих чрезвычайно важную роль в процессах жизнедеятельности организма. [c.15]

    Нуклеиновые кислоты, содержащие рибозу, называются РНК, дезоксирибозу—ДНК. Они отличаются между собой не только углеводным компонентом, но и составом гетероциклических оснований, что видно из схемы  [c.429]

    Нуклеиновые кислоты — полимерные соединения. Их цепи построены из остатков фосфорной кислоты и углеводов рибозы и дезоксирибозы. К углеводным фрагментам присоединены остатки гетероциклических оснований, относящихся к пиримидиновому и пуриновому рядам, т. е. являющихся производными пиримидина и пурина  [c.314]

    Гетероциклические соединения с несколькими гетеро-атомами Они входят в состав молекул одних из важнейших природных соединений — нуклеиновых кислот Нуклеиновые кислоты — полимерные соединения Их цепи построены нз остатков фосфорной кислоты и углеводов рибозы и дезоксирибозы К углеводным фрагментам присоединены остатки гетероциклических оснований, относящихся к пиримидиновому и пуриновому рядам, т е являющихся производными пиримидина и пурина [c.314]

    Нуклеопротеиды. Гидролизуются на простой белок (особенно гистоны или протамины) и нуклеиновые кислоты. Последние в свою очередь гидролизуются с образованием углевода, фосфорной кислоты, гетероциклического основания (стр. 560). [c.297]

    Нуклеопротеиды. Гидролизуются на простой белок (чаще всего гистоны клн протамины) и нуклеиновые кислоты. Последние в свою очередь гидролизуются с образованием углевода, фосфорной кислоты, гетероциклического основания. Растворимы в щелочах и нерастворимы в кислотах. Входят в состав протоплазмы, клеточных ядер, вирусов. [c.507]

    Нуклеиновые кислоты — высокомолекулярные биополимеры, обнаруженные во всех типах клеток. Структурными единицами нуклеиновых кислот являются мононуклеотиды, состоящие из гетероциклических азотистых оснований (пуриновых и пиримидиновых), пентоз и фосфорной кислоты. Нуклеиновые кислоты делятся на два типа рибонуклеиновые (РНК) и дезоксирибонуклеиновые (ДНК). РНК и ДНК различаются особенностями химического строения входящих в них пиримидиновых оснований и пентоз, локализацией в клетке и функциональным назначением в клеточном метаболизме. [c.161]

    Неполный гидролиз нуклеиновых кислот дает нуклеотиды, которые могут быть гидролизованы до фосфорной кислоты и нуклеозидов. При гидролизе нуклеозида получают гетероциклический амин (его часто называют просто основанием) и соответствуюш,ую пентозу. Стадии гидролиза нуклео-протеинов приведены ниже. [c.466]

    Исключительную роль играют в природе гетероциклические соединения, содержащие аминный азот и относящиеся к группам пуринов и пиримидинов. Они являются основаниями и, соединяясь с углеводами и фосфорной кислотой, образуют нуклеиновые кислоты. Пуриновые основания производятся от пурина  [c.142]

    В соответствии с известной моделью Уотсона и Крика [27] нуклеиновые кислоты образуют двойную спираль, состоящую из двух цепей, в которых гетероциклические основания одной цепи связаны водородными связями с основаниями другой цепи. При этом всегда оказываются связанными друг с другом остаток аденина с остатком урацила или остаток гуанина с остатком цитозина. Обе комбинации очень близки по размерам, поэтому несмотря на их чередование поли-нуклеотидная цепь имеет высокую пространственную регулярность. [c.646]

    Подобно тому как полисахариды построены из простых сахаров, а протеины из аминокислот, нуклеиновые кислоты построены из нуклеотидов. Молекула нуклеотида представляет собой кислоту, состоящую из трех компонентов гетероциклического азотистого основания (пуринового или пиримидинового типа), углеводного компонента (рибозы или дезоксирибозы) и остатка фосфорной кислоты  [c.565]

    Нуклеотиды. Третий компонент нуклеиновых кислот — ортофос-форная кнслота — образует сложноэфирные связи со спиртовыми группами рибозы нли дезоксирибозы. Путем расщепления нуклеиновых кислот в контролируемых условиях удается выделить сложные эфиры нуклеозидов и фосфорной кислоты — нуклеотиды. Названия нуклеотидов производятся от названия гетероциклического основания, входящего в нх состав, с добавлением слова кислота цитидиловая кислота, адениловая кислота и т. д. В современной номенклатуре указываются также положения фосфатной группы или групп (аденозии-5 -фосфат, адеиознн-З -фосфат, дезоксиаденозии-5 -фосфат) часто используются однобуквенные сокращения для 5 -фосфатов — рА, рС, рС, ри, pN, р<1А, р<1С, р<1С, р<1и, pdN, для З -фосфатов — Ар, Ср, Ср, ир, Np, dAp, Ср, d p, dUp, dNp, для 2 -фосфатов —А(2 )р, С(2 )р, С(2 1р, и(2 )р, N(2 )  [c.301]


    Все эти гетероциклические основания входят в состав нуклеиновых кислот, играющих чрезвычайно важную роль в процессах жизнедеятельности организмов (стр. 439). [c.359]

    Действительно, первым этапом исследования нуклеиновых кислот явилось изучение продуктов, образующихся ири их гидролизе. При мягком щелочном гидролизе под действием 1 N едкого натра нри 37 , 0,1 /V едкого натра при 100° или под действием 2%-ного водного раствора аммиака полимерная молекулы РНК распадается на мононуклеотиды, содержащие гетероциклическое ядро, моносахарид и остаток фосфорной кислоты, которые и могут быть выделены при жесткой деструкции самого мононуклеотида. Изучение частичного гидролиза мононуклеотидов позволило выяснить ту последовательность, в которой связаны между собою эти три структурные единицы. При нагревании мононуклеотида с разбавленным аммиаком нри 145 от него отщепляется остаток фосфорной кислоты и образуется нуклеозид, при гидролизе которого в кислой среде получается гетероциклическое основание и моносахарид. С другой стороны, при гидролизе мононуклеотида в кис- [c.175]

    Имеются два хорошо известных типа нуклеиновых кислот рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК). Они являются полимерами, построенными из углеводно-фосфатных звеньев (соединенных в цепи остатков фосфорной кислоты и рибозы или дезоксирибозы), с присоединенными в определенные положения углеводного звена гетероциклическими основаниями (точнее, их остатками). Наиболее распространенными гетероциклическими основаниями, входящими в состав нуклеиновых кислот, являются аденин, гуанин, ксантин, гипоксантин, тимин, цитозин и урацил. Эти названия приняты ШРАС/ШВ, однако в указателях СА применяются лишь систематические пурин-пиримидиновые названия. Глико-зилированные основания называют нуклеозидами, и их названия чаще всего строят из названий компонентов при этом название основания модифицируется окончаниями -озин или -идин , как в случае аденозина (29) и тимидина (30). [c.188]

    Что касается полимерной природы нуклеиновых кислот, то с конца 30-х годов существовало убеждение, что ДНК представляет собой тетра нуклеотид с четырьмя различными гетероциклическими основаниями это позволило Ф. Левену сформулировать позднее тетрануклеотидную теорию строения ДНК. Теория была опровергнута лишь в 1950 г. благодаря работам Э. Чаргаффа, который при тщательном анализе нашел значительные различия в нуклеотидном составе ДНК иэ разных источников он же сформулировал правила [c.296]

    Необходимо отметить, что кроме уотсон-криковских пар гетероциклические основания нуклеиновых кислот в принципе способ  [c.24]

    Иную природу имеют межплоскостные взаимодействия оснований. Гетероциклические основания нуклеиновых кислот достаточно гидрофобны, т. е. в водном растворе им выгоднее расположиться друг над другом и тем самым уменьшить контакт с молекулами воды. При образовании таких стопок во взаимодействие вступают функциональные (С=0 и С—ЫНг) группы одного основания и я-элект-ронные системы соседнего с ним по вертикали основания. Поэтому стэкинг-взаимодействия оснований (в двойной спирали ДНК, например) зависят как от состава комплементарных пар, так и от их последовательности (рис. 13). [c.26]

    Нуклеиновая кислота из тимуса оказалась устойчивой к щелочному гидролизу и структура нуклеозидов, получающихся из нее, была проанализирована, поэтому на 20 лет позднее. В то время Левин [10] определил входящий в их состав сахар как 2-дезокси-Д-рибозу и в результате этого объяснил ее необычное свойство восстанавливать окраску реагента Шиффа. Тимусная нуклеиновая кислота также дает четыре гетероциклических основания аденин, гуанин, цитозин и вместо урацила — тимин (7). Эти две отличительные черты (различие в природе сахарного остатка и замена урацила тимином) определяют различие между ДНК, которая, как полагали в то время, аналогично тимусной нуклеиновой кислоте, присуща животным, и РНК, которая, как полагали, является характерным компонентом растительных тканей. [c.34]

    Нуклеиновые кислоты различаются входящими в них гетероциклическими основаниями урацил входит только в РНК, а ТИМИН — в ДНК. [c.433]

    Нуклеиновые кислоты представляют собой гетерополимеры, так как состоят из нуклеотидов с разными гетероциклическими основаниями. С исследовательскими целями иногда синтезируют с помощью ферментов гомополимерные нуклеиновые кислоты, например полиадениловую кислоту. [c.442]

    Азотистые основания, входящие в состав нуклеиновых кислот, являются производными ароматических гетероциклических соединений — пурина и пиримидина. [c.172]

    В подавляющем большинстве случаев нуклеиновые кислоты в качестве гетероциклических оснований содержат урацил (только в РНК), ТИМИН (только в ДНК) и цитозин, являющиеся производными пиримидина, а также аденин и гуанин, относящиеся к производным пурина. [c.298]

    Нуклеозиды. В составе нуклеиновых кислот гетероциклические основания связаны с 0-ри6озой в РНК или с 2-дезокси-0-рибозой в ДНК, образуя соединения, называемые соответственно ри6о нуклеозидами или дезоксирибонуклеозидами. Нуклеозиды являются р-К-пентафуранозидами гетероциклических оснований [c.299]

    Представление о строении нуклеиновых кислот нуклеозиды и нуклеотиды. Гетероциклические основания, рибоза (дезоксирибоза) и фосфорная кислота как структурные единицы нуклеиновых кислот. Представление о строении РНК и ДНК. Биологические функции ДНК и РНК. Рибосомальные, информационные и транспортные РНК. Связь между строением и биологическими функциями нуклеиновых кислот. Двойная спираль как модель молекулы ДНК. Роль водородных связей аденин — тимин и гуанин — цитозин в образовании двойной спирали. Правило Ча )-гаффа. Проблема передачи наследственной информации. Вещество, энергия и информация — необходимые компоненты при синтезе белка. Гснетическин код как троичный неперекрывающийся вырожденный код. [c.249]

    Нуклеиновые кислоты — высокомолекулярные соединения с молекулярными массами от 200 ООО до нескольких миллионов. При полном гидролизе нуклеиновых кислот образуются смесь азотсодержащих гетероциклических оснований (пиримидинов и пуринов), моносахарид пентоза (рибоза или дезоксирибоза) и фосфорная кис- лота  [c.348]

    Однако такая конформация стабилизируется взаимодействием л-электронных систем обоих ядер, особенно если X — электронодонорный, а Y —электроноакцепторный заместители. Такое взаимодействие авторы сравнивают с межпло-скостными взаимодействиями в олиго- и полинуклеотидах, приводящими к наслаиванию друг на друга гетероциклических оснований нуклеиновых кислот (межплоскостные взаимодействия, sta king intera tions, см. стр. 645), [c.594]

    Еще в 1871 г. в печати появились первые данные о том, что в клеточных ядрах содержатся органические вещества, для которых характерно присутствие в молекуле азота и фосфора. Впоследствии эти вещества получили название нуклеиновых кислот. Было показано, что они представляют собой полимеры, в состав которых входят гетероциклические основания (аденин, гуанин, цитозин, урацил, тимин, а иногда и другие), моносахарид пентоза (рибоза или дезоксирибоза) и фосфорная кислота. Общую структуру нуклеиновых кислот можно представить схемой (вертикальной линейкой обозначены остатки пентозы, В — остатки гетероциклических оснований, Р — фосфодиэфирные группы) [c.644]

    Мономерными звеньями нуклеиновых кислот являются нуклеотиды, состоящие из гетероциклического основания, пентозы и остатка фосфорной кислоты. При отщеплении фосфорной кислоты нуклеотид превращается в нуклеозид, в составе которого остается уже два компонента — гетероциклическое основание и пентоза. [c.644]

    Радикалы четырех гетероциклических оснований—ти-мил, цитозил, аденил, гуанил — входят в состав нуклеиновых кислот. [c.16]

    Главная трудность при поисках метода последовательной деструкции полимерной цепи нуклеиновых кислот заключается в том, что при гидролизе полимерная цепь нуклеиновой кислоты разрушается одновременно по всем фосфорноэфирным связям, так как специфичность гетероциклического основания не сказывается в достаточной мере на прочности этой связи. Последнее понятно, так как основание не связано непосредственно с фосфатной группой, а находящийся между ними остаток моносахарида не содержит кратных связей или каких-либо иных электропроводных группировок. [c.252]

    Нуклеиновые основания. Так в химии нуклеиновых кислот азывают входящие в их состав гетероциклические соединения иримидинового и пуринового рядов. В качестве заместителей гетероциклическом ядре они содержат либо оксо- (урацил, ти- [c.431]

    Исторический очерк. К середине прошлого века было установлено, что способность к наследоаанию признаков определяется материалом клеточного ядра. В 186<) г. Ф. Мишер, исследуя химический состав ядер гнойных клеток, выделил из них вещество кислого характера, названное им нуклеином. Это событие расценивается сейчас как открытие нуклеиновых кислот. Сам термин нуклеиновые кислоты был введен в 1889 г., а в 1891 г. немецкий биохимик А. Кёс-сель описал гидролиз нуклеиновой кислоты, установив, что она состоит из остатков сахара, фосфорной кислоты и четырех гетероциклических оснований, принадлежащих к пуринам и пиримидинам. Он же впервые указал на существование двух типов нуклеиновых кислот. [c.296]

    Редкие (минорные) компоненты нуклеиновых кислот. Помимо основных компонентов, в состав нуклеиновых кислот могут входить нуклеозиды с необычными гетероциклическими основаниями или с модифицироваииым углеводным остатком. [c.302]

    Нуклеиновые кислоты представляют собой биополимеры, построенные из нуклеотидоа, соединенных фосфодиэфирной связью. Каждый нуклеотид, в свою очередь, состоит из остатков гетероциклического основания, углевода и фосфорной кислоты. [c.298]

    Одним из важнейших компонентов нуклеиновых кислот являются гетероциклические основания. Все они представ.1яют собой производные пиримидина или пурина. [c.298]


Смотреть страницы где упоминается термин Нуклеиновые кислоты гетероциклические основания: [c.11]    [c.169]    [c.174]    [c.253]   
Биоорганическая химия (1987) -- [ c.106 , c.209 , c.333 , c.335 , c.384 , c.385 , c.386 , c.387 , c.388 , c.389 , c.390 ]




ПОИСК





Смотрите так же термины и статьи:

Кислота гетероциклические

Нуклеиновые кислоты

Основания и кислоты



© 2025 chem21.info Реклама на сайте