Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Некоторые наиболее важные органические растворители

    НЕКОТОРЫЕ НАИБОЛЕЕ ВАЖНЫЕ ОРГАНИЧЕСКИЕ РАСТВОРИТЕЛИ [c.235]

    До тех пор, пока всеобъемлющий термин биотехнология не стал общепринятым, для обозначения наиболее тесно связанных с биологией разнообразных технологий использовали такие названия, как прикладная микробиология, прикладная биохимия, технология ферментов, биоинженерия, прикладная генетика и прикладная биология. Если не принимать в расчет производства мыла, то первая же из числа возникших технологий такого рода стала предшественницей прикладной микробиологии. Наши предки не имели представления о процессах, лежащих в основе таких технологий. Они действовали скорее интуитивно, но в течение тысячелетий успешно использовали метод микробиологической ферментации для сохранения пищи (например, при получении сыра или уксуса), улучшения вкуса (например, хлеба и соевого соуса) и производства спиртных напитков. Пивоварение до сих пор остается наиболее важной (в денежном исчислении) отраслью биотехнологии. Во всем мире ежегодно производится около 10 литров пива стоимостью порядка 100 млн, фунтов стерлингов. В основе всех этих производств лежат реакции обмена веществ, происходящие при росте и размножении некоторых микроорганизмов в анаэробных условиях. В конце XIX в. благодаря трудам Пастера были созданы реальные предпосылки для дальнейшего развития прикладной (технической) микробиологии, а также в значительной мере и биотехнологии. Пастер установил, что микробы играют ключевую роль в процессах брожения, и показал, что в образовании отдельных продуктов участвуют разные их виды. Его исследования послужили основой развития в конце XIX и начале XX вв. бродильного производства органических растворителей (ацетона, этанола, бутанола и изопропанола) и других химических веществ, где использовались разнообразные виды микроорганизмов. Во всех этих процессах микробы в бескислородной среде осуществляют превращение углеводов растений в ценные продукты. В качестве источника энергии для роста микробы в этих условиях используют изменения энтропии при превращениях веществ. Совсем иначе обстоит дело в аэробных процессах при контролируемом окислении химических веществ до углекислого [c.11]


    Некоторые наиболее распространенные органические растворители и их важнейшие свойства [c.255]

    Практически аспекты выбора растворителя вообще очень важны [98]. Растворитель по возможности не должен смешиваться с водой (данные о взаимной растворимости воды и некоторых наиболее обычных органических растворителей приведены в табл. 10 там же указаны и некоторые другие свойства растворителей). Плотность растворителя должна в достаточной степени отличаться от плотности воды, иначе между фазами не будет четкой границы. Часто предпочитают растворители тяжелее воды, особенно при повторных экстракциях в делительных воронках. [c.73]

    За 20 лет, прошедших со времени выхода первого издания, было разработано много новых методов получения, очистки и спецификации органических растворителей, а также вновь определено и исправлено большое число физических констант. По сравнению с первым изданием авторами добавлен материал по многим новым растворителям, тогда как описания некоторых смешанных жидкостей, не являющихся индивидуальными веществами (например, бензина и скипидара), исключены из книги. Значительно увеличено число приведенных в таблицах физических свойств, причем для наиболее важных констант (плотность, показатель преломления и др.) дана температурная зависимость. В книге собран и систематизирован обширный материал по физическим свойствам и способам очистки практически всех органических веществ, используемых в настоящее время в качестве растворителей (254 соединения). [c.5]

    Поглощение важнейших органических растворителей в области 3200—3800 сл-. Кетоны. Для всех кетонов в области 3200—3800 см характерна четкая,сравнительно интенсивная полоса около 3420 см , которая приписывается первому обертону валентных колебаний С = 0-групп. Для кетонов разного типа частоты этой полосы несколько отличаются от указанной, наиболее сильно смещена эта полоса в случае ацетофенона (3360 см- ). Для некоторых кетонов, например ацетона, эта полоса имеет сложную форму, что объясняется, видимо, ассоциацией между молекулами этого соединения. [c.151]

    Уксусная кислота одна из наиболее важных органических одноосновных кислот и имеет широкие применения. Кроме производства уксуса, уксусная кислота применяется в крашении тканей, а некоторые производные уксусной кислоты применяются в производстве красящих веществ. Уксусная кислота является также хорошим растворителем для многих органических веществ. Соли уксусной кислоты находят себе применение в меди- [c.175]


    Растворимость в органических растворителях. Для выбора наиболее рационального метода введения антиоксиданта в каучук важной характеристикой является его растворимость в органических растворителях, особенно углеводородах (табл. 7). В некоторых случаях низкая растворимость антиоксидантов в растворителях может исключить возможность его применения. Фенольные антиоксиданты имеют более высокую растворимость в углеводородах (особенно ароматических), чем аминные. Таким образом, их введение в каучук в виде растворов потребует применения меньших количеств растворителя. Переход от моно- к бис- и трис-фенолам сопровождается снижением их растворимости, особенно в алифатических углеводородах. Таким образом, преследуя цель снизить летучесть антиоксидантов, одновременно приходится встре- [c.644]

    Наиболее важное значение имеют реакции гидролитической деструкции лигнина под действием водных растворов кислот и оснований (гидролиз) и водно-диоксановой смеси в присутствии кислотного катализатора ( ацидолиз ) и без него, а также сольволиз под действием органических растворителей в присутствии кислотных и основных катализаторов, например, этанолиз в присутствии НС1, ацетолиз под действием уксусной кислоты с добавкой кислотного катализатора (минеральной кислоты) и без него и некоторые другие. [c.452]

    При работе с дитизоном всегда очень важно строго контролировать pH среды. При ориентировочных испытаниях и отдельных определениях пользуются капельными пробами на индикаторной бумаге. При серийных анализах удобнее применять растворы индикаторов. Для этой цели пригодны индикаторы, растворимые в воде, но не растворимые в органическом веществе, являющемся растворителем для дитизона. В табл. И приведены некоторые наиболее широко употребляемые индикаторы, отвечающие предъявляемым требованиям. [c.101]

    Комплексные соединения ряда металлов легко экстрагируются Некоторыми органическими растворителями. Этот класс реактивов нашел широкое применение для экстракционно-фотометрического определения большого числа металлов. Наиболее важным представителем этого класса соединений является 1-(2-пиридилазо)- 2-нафтол (ПАН). [c.208]

    Одной из наиболее важных характеристик процесса распределения элемента между двумя несмешивающимися фазами является его зависимость от состава и природы органической фазы. В качестве экстрагентов применяют различные кислородсодержащие органические растворители, такие, как эфиры, кетоны и спирты. Однако в настоящее время большое значение приобрели фосфорорганические соединения и амины с высоким молекулярным весом. Эти экстрагенты обычно применяют в виде растворов в различных органических разбавителях, непременным условием выбора которых является их инертность как по отношению к экстрагенту, так и по отношению к извлекаемому комплексу. Наряду с перечисленными группами экстрагентов в аналитической практике и для некоторых процессов широко применяют сильные органические комплексообразователи, образующие со многими элементами прочные внутрикомплексные соединения. [c.88]

    Вторичный бутиловый спирт находит применение для получения растворителей — бутилацетата, являющегося ценным компонентом лакокрасочных композиций, а также в качестве полупродуктов для некоторых органических синтезов, среди которых наиболее важным является получение на его основе метилэтилкетона, используемого в качестве растворителя в нефтяной и других отраслях промышленности. [c.81]

    Уже давно прошли те времена, когда химик-органик был склонен рассматривать раствор итель лишь как инертную среду, разбавляющую растворенное соединение. После классических работ Н. А. Меншуткина изучению взаимодействия растворенного вещества с растворителем и его влиянию на течение химических реакций и физико-химические свойства посвящается огромное количество работ. За последние годы это направление образовало один из наиболее важных разделов современной физической органической химии. Оказалось, что использование надлежащего растворителя может увеличить скорость некоторых реакций в миллионы и даже миллиарды раз. Оно может изменить и само направление химической реакции и структуру образующегося продукта. Таким образом, правильный выбор растворителя является одной из ключевых позиций для управления химической реакцией. Однако, как осуществить этот выбор и какие принципы положить в его основу  [c.5]

    Хроматографические методы выделения урана прочно вошли в практику. Отделение урана этими методами от большинства металлов основано на способности уранилнитрата растворяться в подходящих органических растворителях. Для разделения находят применение как колонки, заполненные целлюлозой так и просто полосы фильтровальной бумаги Эти методы разделения складываются из процесса распределения вещества между двумя фазами и процесса сорбции. Наиболее важными факторами, от которых зависит разделение, — это избирательность экстракции уранилнитрата, величина коэффициента распределения урана между двумя фазами и способность ряда посторонних элементов сорбироваться волокнами целлюлозы. При соответствующей обработке целлюлозы, например азотной кислотой, увеличивается ее способность удерживать некоторые металлы (например, железо(1П) и торий), при этом скорость продвижения урана вниз по колонке не уменьшается. Имеет значение содержание азотной кислоты в органическом растворителе. [c.813]


    В первой графе табл. 29 помещены в алфавитном порядке ионы металлов. Реагенты, используемые при определении данного металла, даны во второй графе тоже в алфавитном порядке. В третьей графе приведены длины волн максимумов поглощения комплексов, при которых поглощение лиганда минимально, а мешающее действие других компонентов и ионов металлов самое низкое. В четвертой графе показаны те пределы концентраций, в которых поглощение комплекса следует закону Ламберта—Бера. В пятой графе даны наиболее важные условия реакции, главным образом pH раствора, маскирующие реагенты, органический растворитель для случая экстракционных методов и т. д. Состав буферного раствора для установления pH реакционной среды указан только в тех случаях, где это имеет особое значение. Мешающие ионы перечислены в шестой графе. Для некоторых методов мешающие ионы еще не установлены. В таких случаях, как и в случае специфических методов, эта графа остается незаполненной. В последней графе приведены литературные ссылки. Насколько это было возможно, охвачены новейшие работы, которые, в свою очередь, тоже содержат ряд ссылок. [c.211]

    Метакриловая кислота может быть получена окислением метакролеина в жидкой фазе. Исходный метакролеин получают окислением изобутена воздухом в газовой фазе на гетерогенном катализаторе. Далее метакролеин подвергают окислению воздухом в среде органического растворителя при температуре 70 °С и давлении 0,5—5 МПа в присутствии порошкообразного катализатора — продукта СВС — боридов, нитридов или карбидов некоторых металлов. Наиболее эффективным катализатором является НВг (а. с. № 1310384, опубл. Бюлл. изобр. № 18, 1987 г, СССР, 1976 г.). В систему вводится также селективный ингибитор полимеризации — нитроксильный радикал. Практически единственными продуктами реакции являются метакриловая и уксусная кислоты и, что важно с технологической точки зрения, практически не происходит накопления взрывоопасных пероксидных соединений. При использовании в качестве исходного сырья влажного конденсата, полученного на стадии окисления изобутена до метакролеина без выделения последнего, достигаются такие же результаты, как и при окислении чистого метакролеина. Характеристики процесса окисления метакролеина приведены в табл. 5.15. [c.195]

    На долю 20 из многих тысяч изученных и охарактеризованных ферментов приходится более 90% всех ферментов, используемых в настоящее время в промышленности. В табл. 8.1 перечислены некоторые наиболее важные из них и указана область их применения. Остальные ферменты не используются потому, что присущая им активность не удовлетворяет требованиям, предъявляемым высокоспециализированными процессами, протекающими in vitro. Большинство ферментов быстро денатурируют при высокой температуре и в присутствии органических растворителей, а именно в этих условиях протекают многие промышленные процессы. Конечно, [c.168]

    Аскорбиновая кислота содержит два асимметричных атома углерода в 4-м и 5-м положениях, что позволяет образовать четыре оптических изомера. Природные изомеры, обладающие витаминной активностью, относятся к Ь-ряду. Аскорбиновая кислота хорошо растворима в воде, хуже—в этаноле и почти нерастворима в других органических растворителях. Из представленных структурных формул видно, что наиболее важным химическим свойством аскорбиновой кислоты является ее способность обратимо окисляться в дегидроаскорбиновую кислоту, образуя окислительно-восстановительную систему, связанную с отщеплением и присоединением электронов и протонов. Окисление может быть вызвано различными факторами, в частности кислородом воздуха, метиленовым синим, перекисью водорода и др. Этот процесс, как правило, не сопровождается снижением витаминной активности. Дегидроаскорбиновая кислота легко восстанавливается цистеином, глутатионом, сероводородом. В слабощелочной (и даже в нейтральной) среде происходит гидролиз лактонового кольца, и эта кислота превращается в дикетогулоновую кислоту, лишенную биологической активности. Поэтому при кулинарной обработке пищи в присутствии окислителей часть витамина С разрушается. Аскорбиновая кислота оказалась необходимым пищевым фактором для человека, обезьян, морских свинок и некоторых птиц и рыб. Все другие животные не нуждаются в пищевом витамине С, поскольку он легко синтезируется в печени из глюкозы. Как оказалось, ткани витамин-С-чувствительных животных и человека лишены одного-единственного фер- [c.238]

    Наиболее важной характеристикой растворителя является диэлектрическая проницаемость, поскольку растворитель должен быть электропроводным. У большинства органических растворителей диэлектрическая проницаемость ниже, чем у воды (80), и неорганические соли в них растворяются с трудом. Исключением являются некоторые Ы-замещениые амиды, у которых диэлектрическая проницаемость больше 100. Вообще, чтобы избежать экспериментальные трудности, следует подбирать растворители, у которых диэлектрическая проницаемость больше 10. Можно использовать растворители с меньшим значением диэлектрической проницаемости, например, диметоксиэтан (3,5), однако в таких случаях концентрация фонового электролита должна быть очень высокой. [c.23]

    Совпадение уравнений (11.65) и (11.73), полученных с использованием различных исходных величин, вряд ли может рассматриваться как случайность. Из табл, 11.5 следует, что расхождение между расчетными и опытными значениями нулевых точек лежит в пределах ошибок экспериментального определения S и ы Независимость разностей нулег.ых точек от природы растворителя наблюдается для водных растворов и расплавов солей, в то же время этот вывод не находит полного подтверждения при сопротивлении ряда водных и неводных (органических сред). Точно так же некоторые металлы, папример галлий, резко выпадают из общей закономерности. Такой резул],тат представляется естественным, поскольку расчетные уравнения были выведены на основе упрощающих допущений и отвечают, в лучшем случае, лищь первому приближению теории нулевых точек, не учитывающему многие усложняющие факторы. Одним из наиболее важных факторов является различная адсорбируемость воды (или другого растворителя) на разных металлах, т. е. различная гидрофильность металлов. Это приводит к тому, что в нулевой точке на поверхности разных металлов образуются в неодинаковой степени ориентированные слои молекул воды, создающие добавочный скачок потенциала и смещающие положение нулевой точки. Помимо эффекта такой ориентированной адсорбции воды, подробно рассмотренного Фрумкиным и Дамаскииым, следует, по-вндимому, считаться и с более глу- [c.258]

    Большинство органических реакций проводится в растворе н поэтому важно выявить некоторые общие возможности влияния растворителя иа направление и скорость реакции. Некоторые из наиболее обычных органических ] >астворителей можно в общих чертах классифицировать на основаинн их структуры и диэлектрической протицаемостн так, как это показано в табл. 4.4. Существует важное различие между протонными растворителями — растворителями, которые содержат относительно подвижные протоны, нааример протоны, связанные с кислородом, азотом или серой, — н апротонными растворителями. Сходным образом полярные растворители, обладающие., высокой диэлектрической проницаемостью, оказывают на скорость реакции влияние, отличное от такового для неполярных растворителей. [c.145]

    Некоторые полярные апротонные растворители обладают такими свойствами, которые позволяют рекомендовать их для применения в органической химии [1—51. Наиболее важное свойство таких соединений—способность их растворять самые разнообразные полярные органические вещества, особенно это относится к таким растворителям, как диметил фор мамид (ДМФА), диметилацетамид (ДМЛА) и диметилсульфоксид (ДМСО). Сольволиз растворенных электро-фильных соединений или протонирование растворенных соединений основного характера в подобных растворителях протекает медленнее, чем в водной или в спиртовой средах. Для некоторых полярных апротонных растворителей характерна очень высокая температура кипения и широкие температурные границы жидкого состояния моляльное понижение температуры замерзания, как правило, велико, и температурные границы жидкого состояния можно еще расширить, e J и вводить инертные растворимые соединения. Многие из рассматриваемых растворителей смешиваются с водой во всех отношениях, что может облегчить выделение нерастворимых в воде соединений. [c.5]

    Растворимость, или отношение асфальтенов к различным органическим растворителям, была и в настояш ее время остается тем главным и наиболее важным свойством, которое позволяет достаточно полно и всесторонне характеризовать асфальтены. Суш ествование тесной зависимости свойств вещества от химического состава и строения его открыло большие возмо 11пости для ныяспопия химической природы асфальтенов на основании изучения их элементарного состава, некоторых реакций и физических свойств. [c.494]

    Ацетон находит наиболее важное применение в производствах бездымного пороха и целлулоида. Он применяется также для получения раств о ров ацетил- и нитроцеллюлозы и в производстве некоторых сортов искуоственного шелка. Его растворяющие свойства используются для экстрагирования или очистки большого количества органических продуктов, например жиров и смол, а также для многочисленных других целей, как например для мойки пгерсти. Растворитель, полученный смешением ацетона с ароматическими углеводородами, например бензолом или толуолом, был предложен в качестве средства для удаления восков из смазочных масел . Способность ацетона растворять ацетилен используется в широком масштабе при хранении этого газа в стальных цилиндрах для целей сварки. Ацетилен поглощается (пористым материало.м, пропитанным ацетоном, и в таком виде может безопасно сохраняться даже под значительным давлением, тогда как обычно ацетилен при сжатии его до нескольких атмосфер взрывает с страшной силой. Ацетон с примесью других жидкостей был предложен в качестве топлива для двигателей внутреннего сгорания Смесь равных количеств цианпедрина ацетона и хлористого этилена была предложена в качестве инсектисида [c.447]

    Наиболее важные бинарные карбонилы металлов вместе с указанием некоторых их свойств перечислены в табл. 27.1. Эти соединения представляют собой горючие жидкости или легко воспламеняющиеся твердые вещества за редким исключением, они растворяются в неполярных органических растворителях. Карбонилы ванадия и кобальта довольно чувствительны к воздуху, остальные карбонилы на воздухе совершенно устойчивы, особенно карбонилы металлов VI группы и карбонилы рения. Жидкие карбонилы Ре (СО) и N1 (С0)4 следует хранить с осторожностью, так как они токсичны, а их пары образуют с воздухоА взрывчатые смеси они легко разлагаются под действием брома в органических растворителях. [c.115]

    К серьезным недостаткам ТБФ относится его легкая гидроли-зуемость, которая приводит к образованию бутанола, моно-и дифосфатов [11 ]. Эти примеси значительно увеличивают экстракцию продуктов деления. Бутанол образует, по-видимому, комплексные соединения с продуктами деления, что затрудняет их удаление из органической фазы. Дибутилфосфат способствует усилению экстракции циркония, но не увеличивает переход в органический растворитель церия и рутения. Кроме того, дибутилфосфат образует с некоторыми солями нерастворимые осадки [12] и, что наиболее важно, может образовывать очень прочные комплексы с Ри (IV), увеличивая тем самым потери плутония [1 ]. Монобутилфосфат опасен способностью к образованию осадков с Ри (IV). [c.150]

    Характерной особенностью склеропротеинов является их полная нерастворимость в воде, в солевых растворах и в органических растворителях. Они легко отделимы от растворимых веществ тканей (например, от солей, углеводов, липидов и растворимых в воде белков), но их крайне трудно очистить от других нерастворимых структурных белков. Мы не можем ни переоса-ждать, ни перекристаллизовывать эти белки и поэтому не имеем критерия для суждения о том, являются ли они однородными веществами или же представляют собой смеси различных белков. Наиболее важными представителями структурных белков являются кератины и коллагены. Кератины характеризуются устойчивостью как к действию протеолитических ферментов, так и к кипячению с водой. В противоположность кератинам коллагены гидролизуются под влиянием ферментов и при продолжительном кипячении с водой превращаются в желатину (глутин). Кератины и коллагены отличаются друг от друга также по аминокислотному составу (см. табл. 1), по распространению в животном организме и по некоторым другим показателям, которые будут упомянуты в следующих разделах. [c.204]

    Наличием этой прочной ковалентной связи обусловлено наиболее важное физическое свойство — заметная летучесть некоторых безводных нитратов металлов. Например, соединения Си(Шз)2[10], Т1(К0з)4 [И, 16, 59], гг(К0з)4 [12] и Be40(N0з)6 [9] могут существовать в газообразном состоянии и, следовательно, могут быть очищены возгонкой. При рассмотрении методов синтеза будет обращено внимание на некоторые химические свойства, обусловленные наличием ковалентной связи. Многие ковалентные нитраты [например, Си(КОз)2, Zn(N0з)2] обладают хорошей растворимостью в полярных органических растворителях. Так, нитрат меди(П) лучше растворим в этилацетате, чем в воде, и выкристаллизовывать его из раствора в этилацетате не удается [13]. В водных растворах, как правило (но не всегда), наблюдается обычная диссоциация соединений на катионы металла и анионы нитрата. При растворении безводного нитрата бериллия в воде около 10% нитратных групп в растворе превращаются в ионы нитрита [14]. Некоторые нитраты с особо прочной ковалентной связью реагируют (иногда со взрывом) с органическими соединениями. Так, нитрат меди энергично реагирует с диэтиловым эфиром [15] и нитрометаном [13, 15], а тетранитрат титана реагирует с додека-ном, образуя алкилнитраты, нитроалканы и карбоновые кислоты [16]. [c.157]

    Наиболее важная реакция этого рода — реакция фенолов с формальдегидом, которая протекает в присутствии как кислот, так и щелочей. При нагревании фенола (избытка) с формалином и серной кислотой происходит бурная реакция и образуется растворимый в спиртах, ацетоне и сложных эфирах полимер линейного строения — новолак . При щелочной конденсации фенола с избытком формалина сначала обра--зуется легкоплавкий сравнительно низкомолекулярный полимер резол , подобно новолаку растворимый в органических растворителях. Это— так называемый термореактивный полимер при нагревании происходит дальнейшая конденсация свободных оксиметиленовых групп с образованием метиленовых мостов, и полимер приобретает сетчатую структуру. Получаемый резитол нерастворим в органических растворите--лях, но сохраняет некоторую пластичность. При нагревании до 150°С конденсация идет дальше и получается химически очень устойчивый, неплавкий и нерастворимый полимер — резит , который можно нагревать до температуры 300°С. Таковы три стадии процесса конденсации, объединяемые названием бакелитизация (по имени изобретателя бакелита — Бакеланда). Обычно резол перед последующей стадией конденсации смешивают с надолнителем (минеральным типа асбеста или [c.111]

    Полиэтилен — один из наиболее распространенных полимерных материалов. Это объясняется тем, что полиэтилен обладает некоторыми важными свойствами, такими, как химическая стойкость, влагостойкость, высокие электрическая прочность и диэлектрическая способность и др. кроме того, он достаточно дешев и легко перерабатывается в различные виды изделий. Однако полиэтилену присущ ряд недостатков, преодоление которых позволяет еще более расширить сферу использования этого полимера. Главным недостатком полиэтилена является то, что его механическая прочность значительно понижается уже при температурах выше 80° С, а при 105—135° С (в зависимости от степени кристалличности) он превращается в вязкylf жидкость и течет. Кроме того, полиэтилен растворяется в органических растворителях при повышенных температурах. [c.94]

    Полиовирус относится к наиболее подробно охарактеризованным вирусам. В табл. 18.4 описаны некоторые его физические свойства. Вирион имеет примерно сферическую форму. Он лишен липидной оболочки, поэтому его инфекционность практически не меняется при обработке органическими растворителями, такими как эфир или хлороформ. Согласно электронно-микроскопическим данным, диаметр частиц варьирует от 24 до 30 нм. Столь широкий диапазон размеров обусловлен уплощением частиц или разной проницаемостью их для красителей (солей тяжелых металлов) в ходе высушивания и окрашивания, проводимых при приготовлении образцов для электронной микроскопии. Лиофилизованные препараты теряют 99,99% или более исходной инфекционности это означает, что вода играет важную роль в поддержании целостности нуклеокапсида. Недеструктивные методы, такие как седиментационное равновесие [32], малоугловое рентгеновское рассеяние, рентгеновская дифракция [93, 160], с помощью которых измеряют диаметр влажных частиц, показывают, что диаметр вириона находится в интервале 29,8—30,7 нм. [c.199]

    Нельзя сказать, что теория растворимости мало привлекала к себе внимание исследователей. Растворимость—одно из наиболее ярких проявлений действия межмолекулярных сил. В то же время методы измерения растворимости просты, доступны и сравнительно хорошо разработайы. Количественная теория растворимости открыла бы большие возможности для познания законов действия межмолекулярных сил в концентрированных растворах и для изучения внутреннего строения растворов. Поэтому построение количественной теории растворимости—очень важная задача. Попытки создания теории растворимости делаются давно. Так, И. Ф. Шредером была выведена формула растворимости в случае идеальных растворов. Г. Гильдебранд вывел уравнение растворимости так называемых регулярных растворов и широко использовал это уравнение для объяснения растворимости неэлектролитов. Вальден установил, что для растворов, компоненты которых неполярны, взаимная растворимость тем больше, чем меньше разность внутренних давлений этих компонентов в чистом виде. Этот же исследователь показал, что для многих электролитов растворимость возрастает пропорционально кубу диэлектрической постоянной растворителя, в то время как для некоторых органических соединений она уменьшается но этому же закону [7]. Попытки установления количественной связи между растворимостью и составом растворов нредпринимались И. М. Сеченовым, Ван Лааром и многими другими ). В последние годы М. И. Шахпароновым была предпринята попытка построения общей теории растворимости [8,9.] Основное затруднение, препятствующее построению количественной теории растворимости, состоит в том, что объектом теории являются главным образом концентрированные растворы. Насыщенный раствор во многих случаях, представляющих теоретический интерес,—это раствор концентрированный. [c.456]


Смотреть страницы где упоминается термин Некоторые наиболее важные органические растворители: [c.245]    [c.293]    [c.257]    [c.89]    [c.41]    [c.86]    [c.356]    [c.45]    [c.356]    [c.12]    [c.123]    [c.170]    [c.274]    [c.353]    [c.341]   
Смотреть главы в:

Органические реагенты в неорганическом анализе -> Некоторые наиболее важные органические растворители




ПОИСК





Смотрите так же термины и статьи:

Растворители органические



© 2025 chem21.info Реклама на сайте