Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическая поляризация ядер

    Это было убедительно доказано путем изучения химической поляризации ядер Р в реакциях гидропероксидов кумила и трет-бутила с (R O)aP, где R — метильный, этильный или фе-нильный радикал [254], [c.123]

    Эффективный метод изучения химических реакций, протекающих с промежуточным образованием радикальных пар, основывается на использовании явления так называемой химической поляризации ядер (ХПЯ), о котором вместе с явлением химической поляризации электронов еще будет сказано в главе, посвященной рассмотрению спектроскопии ЭПР. [c.39]


    Может происходить и так называемая химическая поляризация ядер и электронов. Дело в том, что неравновесная заселенность зеемановских уровней может создаваться и при элементарных химических актах в образующихся частицах или в тех состояниях, из которых эти частицы возникают (триплетные состояния, радикальные пары и т. п.). В таких ситуациях будут наблюдаться не обычные спектры магнитного резонанса (спектры поглощения), а либо с аномальной интенсивностью поглощения, либо даже спектры испускания. [c.83]

    Аномально высокая интенсивность сигналов поглощения соответствует повышенной заселенности более низкого зеемановского уровня, т. е. созданию так называемой положительной химической поляризации ядер или электронов  [c.83]

    С другой стороны, спектры эмиссии соответствуют повышенной заселенности более высокого зеемановского уровня, т. е. отрицательной химической поляризации ядер или электронов Л а <С1  [c.83]

    Наблюдение эффектов химической поляризации ядер и электронов в спектрах ЯМР и ЭПР возможно лишь в процессе протекания элементарных актов, так как сверхравновесная заселенность зеемановских уровней каждой частицы сохраняется только в течение времени ядерной (1...30 с) или электронной (10". ..10 5 с) релаксации. Поэтому при изучении этих явлений проводят реакции непосредственно в.магнитном поле спектрометров и непрерывно ведут регистрацию спектров. [c.83]

    Теория химической поляризации ядер и электронов сложна и продолжает разрабатываться, но уже в настоящее время открываются большие возможности анализа механизмов и кинетики химических реакций с использованием указанных эффектов. [c.84]

    Химическая поляризация ядер. Обычные ЯМР-спектры соответствуют частицам с равновесной заселенностью ядерных зееманов-ских уровней. Если, однако, молекулы образуются из радикалов, испытавших встречи с другими радикалами, то в них может возникнуть неравновесная заселенность зеемановских уровней. Такие частицы будут давать аномальные спектры ЯМР сильное поглощение (Л) при положительной поляризации и эмиссию ( ) при отрицательной поляризации. Спектры неравновесной поляризации ядер наблюдаются сразу же после образования частиц за период времени ядерной релаксации (1—30 с). Часто в спектрах ЯМР наблюдается мультиплетный эффект, когда линии спинового мультиплета в высо- [c.296]

    Метод химической поляризации ядер дает следующую информацию. [c.297]

    Химическая поляризация ядер доказывает протекание реакции через промежуточные парамагнитные частицы (радикалы, бирадикалы, ион-радикалы) метод обнаружения радикальных стадий на несколько порядков выше по чувствительности метода ЭПР. [c.297]

    Химическая поляризация ядер. Обычные ЯМР-спектры соответствуют частицам с равновесной заселенностью ядерных зеемановских уровней. Если, однако, молекулы образуются из радикалов, испытавших ветре- I й [c.349]


    Интересным явлением, связанным с особенностями взаимодействия свободных радикалов в клетке, является химическая поляризация ядер. Это явление нашло широкое применение при исследовании реакций свободных радикалов. [c.174]

    Однако имеются данные, указывающие на то, что в реакции простых литийорганических соединений с алкилгалогенидами участвуют радикалы. Промежуточно образующиеся радикалы были обнаружены методами ЭПР и химической поляризации ядер. Процесс может включать одноэлектронный перенос от карбаниона к галогеноалкилу с образованием алкильного радикала (Я ) и анион-радикала (Я Х ). Последний легко распадается на ион галогена и алкильный радикал. Алкильные радикалы объединяются, давая желаемый продукт, а также продукты диспропорционирования и симметричные продукты сочетания. [c.246]

    ХИМИЧЕСКАЯ ПОЛЯРИЗАЦИЯ ЯДЕР, появление не равновесной ядерной намагниченности диамагнитных молекул, образующихся в результате радикальных р-ций. В спектрах ЯМР этих молекул наблюдается усиление линий испускания или поглощения энергии перем. магн. поля, обусловленное неравновесной заселенностью зеемановских энергетич. уровней (см. Ядерный магнитный резонанс). X. п. я. объясняется тем, что суммарное спиновое состояние неспаренных электронов радикальной пары зависит [c.644]

    Быстрые реакции 4/880, 88) 5/445 и химическая поляризация ядер 5/460 [c.564]

    Хотя методы ЯМР и ЭПР основываются, вообще говоря, на одних и тех же принципах изучения резонансных переходов между, зеемановскими уровнями спиновых систем, количественные различия в абсолютных значениях магнитных моментов и их знаках, а также различный характер изучаемых объектов и решаемых задач обусловливают то, что эти методы развивались практически независимо и имеют существенные отличия в теории и экспериментальном воплощении. В то же время есть ряд аспектов, где явления ядерного и электронного магнитного резонанса тесно переплетаются. Это прежде всего методы множественного резонанса, например двойного электрон-ядерного резонанса (ДЭЯР). Проще рассматривать совместно также химическую поляризацию ядер и электронов и т. д. [c.7]

    В настоящее время химическая поляризация ядер (ХПЯ) исследована во многих реакциях термического распада перекисей и азосоединений, процессах изомеризации с миграцией молекулярных фрагментов и др. На рис. 111.17 в качестве примера показано, как выглядит спектр ПМР продуктов, получающихся при термическом распаде перекиси ацетилбензоила в тетрахлорэтилене при 100°С видны несколько сигналов эмиссии (направлены вниз), обусловленных отрицательной сверхравновеснон ХПЯ. Для каждого пика на рисунке указано его отнесение. Обнаружение эффектов химической поляризации является надежным критерием существования радикальных стадий реакции. [c.83]

    С, в j li), с наблюдаемой химической поляризацией ядер образующихся продуктов  [c.84]

    Химическая поляризация ядер наблюдается в продуктах термического и фотохимического распада перекисей и азосоединений, в продуктах реакций изомеризации и перегруппировки, при фотолизе карбонильных соединений, в продуктах реакций металлоргани-ческих соединений, в реакциях окисления, переноса электрона и т. д. [c.297]

    Довольно широкое применение в фотохимии при исследовании промежуточных продуктов нашли методы магнитного резонанса. Для исследований как дублетных радикалов, так и молекул в триплетном возбужденном состоянии используется собственно метод электронного парамагнитного резонанса (ЭПР). Хотя в газовой фазе молекулы с орбитальным моментом (например, Ог Дг) также дают парамагнитный резонанс, основной областью применения этого метода являются исследования в жидкой фазе. Один из недостатков собственно метода ЭПР заключается в ограниченном временном разрешении (около I мкс), преимущественно обусловленном параметрами микроволнового резонатора. Метод спинового эха позволяет достигать временного разрешения примерно 50 нс. Однако наилучшее временное разрешение порядка нескольких наносекунд дает метод оптически детектируемого магнитного резонанса (ОДМР). Этот метод относится к большой группе методов двойного резонанса. Переход в микроволновой области распознается не по поглощению, непосредственно измеряемому в микроволновом диапазоне, а по некоторому эффекту, например изменению поглощения или флуоресценции в видимой области вследствие изменений взаимодействия при перераспределении заселенностей спиновых состояний. Мы уже ссылались (см. разд. 3.7) на метод химической поляризации ядер и метод химически индуцированной динамической поляризации электронного спина при изучении поведения радикальных пар. В первом методе используется поляризация рекомбинирующих мо- [c.198]

    Наиболее существенной переработке подвергнута гл. Ill, в которой рассматриваются элементарные химические реакции. С более общих позиций, чем в предыдущих изданиях, излагается вопрос о расчете абсолютных скоростей реакций. Метод активированного комплекса (теория переходного состояния) приводится лишь как один из существующих подходов к решению этой задачи. Проанализирован вопрос о границах применимости теории переходного состояния. Даны сведения о новых подходах к расчету абсолютных скоростей реакций — теории мономолекулярных реакций Райса, Рамспергера, Кесселя и Маркуса, о методах расчета динамики газовых бимолекулярных реакций. В 3 гл. Ill приводятся основы диффузионной теории бимолекулярных реакций в растворе. При описании основных типов элементарных реакций, в том числе фотохимических реакций, использованы подходы, основанные на рассмотрении орбитальной симметрии и граничных орбиталей. Расширено изложение клеточного эффекта в свободнорадикальных реакциях, где обнаружены такие важные эффекты, как химическая поляризация ядер и влияние магнитного поля на направление превращений свободных радикалов. [c.5]


    Широко применяются в химической кинетике радиоспектроскопические методы, в первую очередь электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР). Использование метода ЭПР, открытого русским ученым Е. К- Завойским в 1944 г., позволило выявить большую роль радикалов в различных химических и биологических процессах, подробно изучить их свойства и измерять скорости их превращений. Именно благодаря широкому использованию метода ЭПР в настоящее время стали хорошо понятны механизмы и закономерности многих радикальных реакций, в частности практически важных процессов окисления, полимеризации, термо- и фотодеструкции полимеров, радиационных процессов. Методы ЭПР и ЯМР позволяют не только изучать структуру веществ и находить их концентрации, но и непосредственно определять скорости химических реакций, поскольку ширина резонансных линий определяется временем жизни спиновых состояний и соответственно скоростью их химических превращений. В последние годы благодаря применению неоднородных магнитных полей для измерений и ЭВМ для обработки получаемой информации появилась возможность изучения радиоспектральными методами пространственного распределения веществ в негомогенных непрозрачных объектах (томография) и их превращений, открывающая принципиально новые возможности в химии, биологии и медицине. Методы химической поляризации ядер и электронов позволяют анализировать механизм химических реакций и устанавливать наличие парамагнитных интермедиатов даже в тех случаях, когда они столь лабильны, что их существование не может быть обнаружено никакими иными методами. [c.4]

    В настоящее время явление химической поляризации ядер (ХПЯ) приобрело большую популярность, теория этого явления и его применение в химии изложены в ряде книг и обзоров. Для того чтобы понять это явление, которое было открыто в 1967 г. Фишером и Баргоном и независимо Уордом и Лоулером, обратим внимание, что явление ХПЯ характерно только для определенного типа химических реакций, а именно для [c.90]

    Эта схема включает стадии взаимодействия и диспропорционирования радикалов. Такой механизм был подтвержден изучением химической поляризации ядер (ХПЯ), наблюдаемой в продуктах перегруппировки в процессе разложения /я/>е/и-бутилацетил-л<-хлорбензоилпероксида. [c.276]

    Этот эффект назьшается химической поляризацией ядер (ХПЯ). Он ироявляется исключительно для продуктов радикальных реакций. Реакции, идущие через катионы илн анноны, а также согласованные реакции не дают иоляризовэнных продуктов. Молекула продукта некоторое время носле своего образования еще помнит , что она произошла нз радикалов. [c.1162]

    Г-пара fiHs OO Hj. Поскольку в Т-S-превращении преим. участв ют пары, содержащие С, кол-во этого изотопа в феннлбензоате, образовавшимся в результате внутриклеточной рекомбинации радикалов, на 23% больше, чем в бензоле, являющимся продуктом внеклеточных превращ. СбН ,- К. э. проявляется также в [том, что продукты, образующиеся при рекомбинации радикалов внутри клетки, и продукты превращения радикалов, вышедших из клетки, имеют противоположные знаки химической поляризации ядер. [c.410]

    Для изучения структур сложных Р. с. используют метод двойного электрон-ядерного резонанса (ДЭЯР). Р-ры с высокими концентравд Ями Р. с. могут быть исследованы с использованием спектров ЯМР (особенно когда константы сверхтонкого взаимод. в спектрах ЭПР малы). Для изучения гомолитич. распада молекул в р-рах, взаимод. радикальных пар и др. используют метод химической поляризации ядер (ХПЯ). [c.156]

    Методы Р. применяют для определения геом. параметров в-в, установления их электронной структуры, для исследования кинетики и механизма хим. р-ций (в т. ч. комплексообразования и сольватации), для изучения состава и строения продуктов радиолиза облученных соед., качеств, и количеств. анализа газообразных, жидких и твердых в-в. Наиб, часто используют методы ЯМР и ЭПР, к-рые включают ряд направлений, различающихся кругом решаемых задач, объектами исследования и аппаратурным оформлением (см., напр.. Химическая поляризация ядер. Спинового эха метод). Л.Л.Вашиап. [c.171]


Библиография для Химическая поляризация ядер: [c.82]    [c.90]    [c.233]    [c.281]   
Смотреть страницы где упоминается термин Химическая поляризация ядер: [c.55]    [c.70]    [c.45]    [c.623]    [c.183]    [c.613]    [c.624]    [c.695]    [c.695]    [c.700]    [c.712]   
Смотреть главы в:

Химическая кинетика -> Химическая поляризация ядер

История органической химии  -> Химическая поляризация ядер

История органической химии -> Химическая поляризация ядер

Магнитные и спиновые эффекты в химических реакциях -> Химическая поляризация ядер


Основы и применения фотохимии (1991) -- [ c.70 ]

Курс химической кинетики (1984) -- [ c.174 ]




ПОИСК





Смотрите так же термины и статьи:

Китаев. Химическая поляризация ядер в реакциях одноэлектронного переноса

Поляризация химическая

Поляризация химическая атомных ядер

Теория химической поляризации ядер и электронов в радикальных реакциях

ХИДПЯ химически индуцированная динамическая поляризация ядер

Химическая поляризация ядер и электронов

Химически индуцированная динамическая поляризация ядер

Химически индуцированная поляризация ядер ХПЯ



© 2025 chem21.info Реклама на сайте