Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поляризация динамическая

    Иначе обстоит дело, если поляризующее поле существует вне рассматривае.мой молекулы и независимо от нее. Индуцируемый в этом случае момент наводится только временно и исчезает при устранении внещнего воздействия. В отличие от вышеописанной статической поляризации в этом случае можно говорить о динамической поляризации. Динамическую часть общей поляризации можно определить экспериментально. Если внести вещество в однородное электрическое поле, то, с одной стороны, постоянные диполи ориентируются параллельно линиям поля (ориентационная поляризация) и, с другой стороны, благодаря сдвигу электронов относительно ядер атомов (электронная поляризация) и сдвигу ядер относительно друг друга (атомная поляризация) возникает индуцированный дипольный момент (поляризация смещения). Таким образом, общая поляризация, которой соответствует измеряемая диэлектрическая проницаемость, включает следующие составные части  [c.49]


    В переводе будет в основном применяться привычная для русской литературы терминология статическая поляризация = поляризация динамическая поляризация = поляризуемость,— Прим. перев. [c.55]

    Динамическое электронное смещение способно распространяться по длине молекул аналогично индукционным эффектам, прежде всего в случае сопряженных систем с двойными связями. При этом поляризация может не затухать, а сопровождаться образованием чередующихся зарядов. На практике в молекуле присутствуют группы атомов, действие которых на полярность и поляризуемость проявляется одновременно. Это наглядно показано в табл. 4.3. [c.200]

    Поры закрываются вследствие образования пленки окислов и снова возникают в других местах, где происходит растворение пленкн или ее катодное восстановление. Явление пассивности, по теории Г. В. Акимова, представляет собой динамическое равновесие между силами, создающими защитную пленку (окислителями, анодной поляризацией), и силами, нарушающими ее сплошность (водородными и галоидными ионами, катодной поляризацией и др.). [c.307]

    Для решения вопроса о радикальном характере процесса может быть использована и ЯМР-спектроскопия. В продуктах радикальных реакций тотчас после их образования наблюдается химически индуцируемая динамическая поляризация ядер — эффект ХП . Эффект ХПЯ нестоек и постепенно исчезает. Время существования э4х )ект ХПЯ может оказаться либо слишком малым, либо достаточным, чтобы эффект мог проявиться в спектрах ЯМР продуктов реакции, Если оно достаточно, то в этом случае спектры ЯМР продуктов реакции снимают тогда, когда они еще находятся в реакционной массе. [c.149]

    При образовании молекулярных продуктов из свободных радикалов методом ЯМР наблюдается динамическая поляризация ядер. [c.92]

    Химически индуцированная динамическая поляризация ядер (ХПЯ)- Гомолиз связей с образованием свободных радикалов или радикальной пары в ряде случаев приводит к образованию намагниченности ядер, неравновесной по сравнению с больцмановской равновесной. Неравновесное распределение спинов ядер сохраняется в стабильных продуктах, образующихся из радикалов, и постепенно уменьшается в результате релаксационных процессов в системе спинов ядер. [c.279]

    Поляризуемость (динамическая поляризация) — это подвижность электронной системы, способность ее реагировать на действие внешнего поля. Величиной, позволяющей в нервом приближении оценивать поляризуемость молекулы, является молекулярная рефракция MR . [c.390]


    В этилене симметричная (неполярная) двойная связь легко поляризуется за счет подвижных я-электронов как под влиянием электромагнитного поля реагентов (динамическая поляризация), так и под влиянием заместителей в производных этилена (статическая поляризация). [c.135]

    Для детектирования свободных радикалов имеется и другой магнитный метод, использующий обычный спектрометр ЯМР. Этот метод стал применяться после того, как было открыто явление химически индуцированной динамической поляризации ядер [126, 127]. Если спектр ЯМР снимать в ходе реакции, то одни сигналы могут усиливаться либо в положительном, либо в отрицательном направлении, а другие могут ослабевать. Когда это наблюдается для продукта реакции, это означает, что по крайней мере часть такого продукта образуется через промежуточный свободный радикал [128]. К примеру, возник вопрос, участвуют ли радикальные интермедиаты в реакции обмена между этилиодидом и этиллитием (реакция 12-38). [c.241]

    ЮТСЯ с неспаренным электроном. Наличие этого явления всегда означает, что в реакции участвует свободный радикал, однако его отсутствие необязательно свидетельствует о том, что свободнорадикальный интермедиат не образуется, поскольку реакция с его участием может проходить и без наблюдаемого эффекта химически индуцированной динамической поляризации ядер. Кроме того, наблюдение этого эффекта еще не говорит о том, что весь продукт образуется через радикальный интермедиат, а лишь указывает на то, что часть продукта образуется таким образом. [c.242]

    Детектирование интермедиата. Во многих случаях интермедиат нельзя выделить, но его наличие можно определить с помощью ИК-, ЯМР- или других спектров [Па]. Так, при нитровании бензола (т. 2, реакция 11-2) детектирование иона МОг+ с помощью КР-спектров убедительно подтверждает образование этого иона в качестве интермедиата. Образование свободнорадикальных и триплетных интермедиатов часто можно зафиксировать с помощью спектров ЭПР и химически индуцируемой динамической поляризации ядер (см. гл. 5). [c.284]

    Высказывалось предположение [192], что синглетные карбены внедряются по прямому одностадийному механизму, а триплетные (которые, будучи свободными радикалами, легче отрывают водород) — по свободнорадикальному механизму. Это подтверждается результатами исследования химически индуцированной динамической поляризации ядер [193] (т. 1, разд. 5.8) так, соответствующие сигналы наблюдались в этил-бензоле, полученном из толуола и триплетного СНг, но не наблюдались при той же реакции с синглетным СНг [194]. [c.447]

    Несмотря на значительное число исследований [332], механизм образования реактивов Гриньяра окончательно не установлен. Изучение химически индуцированной динамической поляризации ядер [333] (т. 1, разд. 5.8), стереохимии, кинетики и продуктов [334] указывает на то, что свободные радикалы являются интермедиатами реакции. Дальнейшее подтверждение этому получено после улавливания свободных радикалов [335]. Предложен следующий механизм образования реактивов Гриньяра [333]  [c.466]

    Механизм реакции аналогичен показанному в разд. 14.3 для реакции также наблюдается химически индуцированная динамическая поляризация ядер (ХПЯ) [278]. Радикалы образуются в процессе распада пероксида  [c.99]

    Разд. 3.7 динамическая магнитная поляризация [c.79]

    Динамическая ядерная поляризация — эффект Оверхаузера (для определения механизма протекания химических превращений). [c.732]

    Подобно индуктивным эффектам мезомерные эффекты обусловливают поляризацию молекул в основном состоянии и поэтому отражаются на физических свойствах соединений. Существенное различие между индуктивным и мезомерным эффектами заключается в том, что первые характерны главным образом для насыщенных групп или соединений, в то время как вторые чаще проявляются в ненасыщенных и особенно в сопряженных соединениях. Индуктивные эффекты обычно связаны с электронами а-связей, тогда как мезомерные — с я-связями и орбиталями. Индуктивные эффекты указывают влияние только на сравнительно небольших расстояниях в насыщенных цепях, в то время как мезомерные эффекты могут передаваться от одного конца сравнительно больших молекул к другому при условии наличия сопряжения (т. е. делокализованных я-орбиталей). Как индуктивные, так и мезомерные эффекты влияют на свойства соединений и в статическом, и в динамическом состояниях они сказываются на положении равновесия, на скорости реакций, на силе кислот и оснований, а также на реакционной способности соответствующих алкилгалогенидов и иа относительной легкости замещения различных ароматических соединений. [c.40]

    В пользу этого механизма свидетельствует получение продуктов сочетания и диспропорционирования из R иК , а также наблюдение химически индуцированной динамической поляризации ядер. [c.235]


    Уменьшение механохимического э( )фекта на стадии динамического возврата проявляется в условиях статического нагружения (см. рис. 21, кривая /) сильнее, чем в условиях динамического (см. рис. 21, кривые 2, 3, 4), что указывает на более полное протекание процессов возврата в статических условиях. Особенно значительно уменьшается механохимический эффект на этой стадии при потенциостатической поляризации в случае более высоких значений плотности тока (ср. кривую 1 и кривую г а на рис. 21). Это связано с тем, что одна и та же величина деформационного сдвига потенциала вызывает одинаковое приращение логарифма плотности тока (в тафелевской области), т. е. приращение плотности тока больше при более высоком ее исходном значении. - [c.84]

    Параметры анодной поляризации начинают изменяться (разблагораживание потенциалов активного растворения и перепассивации, облагораживание потенциала пассивации, рост плотности токов активного растворения и пассивации) уже при нагружении в упругой области (рис. 26, точка 1 диаграммы напряжение — деформация), однако максимальное изменение наблюдается в области пластического течения и с ростом деформационного упрочнения (причем, поскольку площадка текучести в данном случае почти не проявлялась, изменение величин было монотонным). Затухание роста деформационного упрочнения на стадии динамического возврата (см. рис. 26, точка 4) вызвало перемену знака дальнейшего изменения параметров поляризации, т. е. ослабление механохимического эффекта. [c.83]

    Устройство для исследования механохимического поведения металлов Для изучения механохимического поведения металлов в электролитах, связанного с изменением анодной поляризации металла при одновременном воздействии механических напряжений, существуют различные конструкции электрохимических ячеек, устанавливаемых на разрывных машинах. Ниже описана простая по конструкции и удобная в работе с тонколистовыми образцами прижимная ячейка, позволяющая проводить электрохимические исследования в статическом и динамическом режимах нагружения, а также усовершенствована схема установки для экспрессных механохимических измерений [81]. [c.88]

    Адиабатическая кросс-поляризация. Динамическое согласование (выравнивание) уровней энергии может быть достигнуто с помощью эксперимента с антипересечением уровней. В этом случае амплитуды РЧ-полей, действующих на оба вида ядер, изменяются, проходя через условия квазипересечения уровней [8.49, 8.100]. С незначительными модификациями те же самые схемы можно применять и для гетероядерной 2М-спектроскопии в твердых телах, хотя условия, характерные для твердых тел, более подходят к кросс-поляризации во вращающейся системе координат [8.101—8.104]. [c.554]

    В приведенном примере И. э. атома хлора обусловливает более сильные кислотные свойстна хлоруксусной кислоты, чем уксусной. Поляризацию а-свя-зей реагирующих молекул при их взаимодействии называют индуктомерным эффектом (динамическим индукционным эффекто ,т). [c.108]

    В первые же годы возникновения электронных теорий химического сродства стало ясно, что химическая связь не является чем-то раз навсегда данным, что она претерпевает различные изменения, модификации в зависимости от того, какие атомы ее образуют и в каких процессах она принимает участие. Внутреннее электрическое поле молекулы неоднородно, электроны распределяются неравномерно, ввиду различной электроотрицательности атомов. Органическая молекула обычно оказывается поляризованной. Эта поляризация может быть двух типов. Постоянная поляризация обусловлена статическими электронными смещениями динамическая, временная поляризация связана с действием внешних полей. Понимание электронных смещений было результатом исследований английской школы химиков и в первую очередь Льюиса, Лепуорса, Робинсона, Ингольда. Этим исследователям принадлежит разделение эффектов электронных смещений в молекуле на статические и динамические. В свою очередь каждый из этих эффектов, как выяснилось, проявляется по-разному, в зависимости от того, рассматриваются ли а- или я-связи. [c.62]

    На рис. 5.1 [129] кривая а соответствует спектру ЯМР, снятому в ходе реакции, а кривая б — эталонному спектру этилиодида (бсня 1,85 бсы, 3,2 м. д.). Из рисунка видно, что на кривой а некоторые сигналы этилиодида усилены, а другие опущены ниже базовой линии отрицательное усиление, называемое также эмиссией). Таким образом, этилиодид, образующийся в процессе обмена, обнаруживает химически индуцируемую динамическую поляризацию ядер, а это означает, что он образуется через промежуточный свободный радикал. Такое явление поляризации возникает, когда на пути от реагентов к продуктам протоны реагирующей молекулы динамически спарива- [c.241]

    Изучение механизмов реакций карбенов с помощью химически индуцированной динамической поляризации ядер описано в обзоре Roth, Асс. hem. Re ., 10, 85—91 (1977). [c.493]

    Соединение 2 представляет собой частично восстановленный кватерфенил. Конечно, сочетание необязательно должно происходить по положениям орто — орто, могут образоваться и другие изомеры. В пользу стадий (9) и (10) свидетельствует выделение соединений 2 и 3 [15], хотя обычно в условиях реакции дигидрофенилы, подобные 3, окисляются до соответствующих дифенилов. Другим доказательством в пользу этого механизма являются детектирование интермедиата 1 с помощью химически индуцированной динамической поляризации ядер (ХПЯ) [16] (см. т. 1, разд. 5.8), а также отсутствие изотопных эффектов, которые должны были бы наблюдаться, если бы лимитирующей была стадия (7), включающая расщепление связи Аг—Н. В представленном механизме лимитирующая стадия (8) не включает потерю водорода. По аналогичному механизму идет реакция, в которой атакующим радикалом является НО (реакция 14-5). [c.60]

    Довольно широкое применение в фотохимии при исследовании промежуточных продуктов нашли методы магнитного резонанса. Для исследований как дублетных радикалов, так и молекул в триплетном возбужденном состоянии используется собственно метод электронного парамагнитного резонанса (ЭПР). Хотя в газовой фазе молекулы с орбитальным моментом (например, Ог Дг) также дают парамагнитный резонанс, основной областью применения этого метода являются исследования в жидкой фазе. Один из недостатков собственно метода ЭПР заключается в ограниченном временном разрешении (около I мкс), преимущественно обусловленном параметрами микроволнового резонатора. Метод спинового эха позволяет достигать временного разрешения примерно 50 нс. Однако наилучшее временное разрешение порядка нескольких наносекунд дает метод оптически детектируемого магнитного резонанса (ОДМР). Этот метод относится к большой группе методов двойного резонанса. Переход в микроволновой области распознается не по поглощению, непосредственно измеряемому в микроволновом диапазоне, а по некоторому эффекту, например изменению поглощения или флуоресценции в видимой области вследствие изменений взаимодействия при перераспределении заселенностей спиновых состояний. Мы уже ссылались (см. разд. 3.7) на метод химической поляризации ядер и метод химически индуцированной динамической поляризации электронного спина при изучении поведения радикальных пар. В первом методе используется поляризация рекомбинирующих мо- [c.198]

    Моргун Н.П., Хабалов В.В. Влияние электрохимической поляризации адсорбента на динамические характеристики адсорбции органических [c.7]

    VIII.К.9. Химически индуцированная динамическая поляризация ядер [c.331]

    При статическом нагружении с помощью разрывной машины на фиксированных уровнях нагрузки, соответствующих области упругой деформации, стадии легкого скольжения, области деформационного упрочнения и стадии динамического возврата, снимали анодные потёнциодинамические кривые (2,4 В/ч) и определяли зависимость от степени деформации потенциалов полной пассивации и- перепассивации (области пассивного состояния), скорости коррозии (потери массы), плотности тока начала пассивации (в области Фладе-потенциала), потенциалов активного и транспассивного состояний при определенном значении тока поляризации, плотностей тока активного, пассивного и транспассивного состояний на определенных уровнях потенциалов. При динамическом нагружении записывали плотности токов активного растворения и пассивного состояния в потенциостатическом режиме, величины потенциалов в гальваностатическом режиме, а также изучали влияние скорости деформации на величину тока и электродные потенциалы. [c.80]

    Влияние деформации на катодную поляризационную кривую выделения водорода для стали 1Х18Н9Т аналогично отмеченному выше для стали 20 деформация на стадии деформационного упрочнения ускоряет катодную реакцию (на стадии динамического возврата наблюдалось ослабление этого влияния, как и в случае анодной поляризации). Объясняется это, по-видимому, зависимостью скорости разряда ионов водорода и рекомбинации адсорбированных атомов от работы выхода электрона и адсорбционных свойств поверхности металла в связи с влиянием деформации электрода на эти свойства. Однако возможно, что наблюдаемое изменение катодной поляризации связано с пространственным перераспределением анодных и катодных реакций вследствие стремления к локализации анодного растворения пластически деформированного электрода, как это рассмотрено в гл. IV. [c.86]

    Исследование скорости развития трещины в зависимости от уровня нагружения, свойств материала, среды и внешних факторов (поляризации, давления и температуры) [8,50]. При таком подходе данные о закономерностях роста трещин иод воздействием агрессивной среды и механических напряжений представляют в виде зависимостей скорости роста трещин при статическом (ко розионное растрескивание) или- динамическом (коррозионная усталость) нагружении от максимального (амплитудного) коэффициента интенсивности К цикла. При этом данные для построения указанных зависимостей (диаграмм разрушения) получают при испытании стаццаргньм образцов с трещинами, образовавшимися на образцах в процессе периодического (усталостного) нагружения их на воздухе. Подрастание трещины во времени измеряют по изменению электросопротивления образца, оптическим методам по податливости материала и т. п. Испытания проводят при заданной температуре среды, накладывая, по необходимости, на Образец анодную или катодную поляризацию. По полученнь м данным рассчиты- [c.132]

    Другой метод изучения реакцнн, являющийся очень специфичным для радикальных процессов, — химически индуцированная динамическая поляризация ядер, сокращенно ХИДПЯ [5]. Необходимый для таких исследований прибор является обычным спектрометром ДМР, [c.453]


Смотреть страницы где упоминается термин Поляризация динамическая: [c.95]    [c.265]    [c.265]    [c.468]    [c.241]    [c.70]    [c.118]    [c.83]    [c.82]    [c.85]    [c.306]    [c.14]   
Введение в электронную теорию органических реакций (1965) -- [ c.45 , c.49 ]

Курс теоретических основ органической химии издание 2 (1962) -- [ c.280 ]

Курс теоретических основ органической химии (1959) -- [ c.251 ]




ПОИСК





Смотрите так же термины и статьи:

Динамическая поляризация (поляризуемость)

Динамическая поляризация протонов

Динамическая поляризация ядер

Динамические процессы поляризация ядер

Исследование сольватации радикалов с помощью динамической поляризации ядер

Кинетические уравнения, описывающие релаксацию распределения плазменных колебаний и юлаксацшо распределений частиц, обусловленную ваанмодействием с слазв меннымк колебаниями Квантовый интеграл столкновений заряженных частиц, учитывающий динамическую поляризацию

Нарушение правила Гунда и динамическая спиновая поляризация

Теория динамической поляризации ядер

Тетраметил оксопиперидин оксил динамическая поляризация протонов

Фреми соль динамическая поляризация протонов

ХИДПЯ химически индуцированная динамическая поляризация ядер

Химически индуцированная динамическая поляризация

Химически индуцированная динамическая поляризация ядер

Ядерная поляризация химически индуцированная динамическая



© 2025 chem21.info Реклама на сайте