Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пиридин полярность

    При хаотическом распределении ориентаций диполей зависимость е жидкости или раствора от 1/Г при постоянном объеме должна быть линейной. Для ацетона линейная зависимость наблюдается при температурах выше 10 "С, а ниже этой температуры отмечено отклонение от линейного закона. Отсюда следует, что в ацетоне (при t> 10 °С), а также нитробензоле, пиридине полярные группы молекул должны иметь хаотическое распределение взаимных ориентаций. Существование прочных ассоциатов в жидкостях, где нет водородных связей между молекулами, представляется маловероятным. [c.43]


    Пиридин (Гкип = 115,5°С) является еще более близким аналогом бензола, чем тиофен. Энергия резонанса пиридина составляет 155 кДж/моль. В отличие от бензола, молекула пиридина полярна (и, = 7,3 10 Кл м).Это обусловлено высокой электроотрицательностью атома азота, пребывающего в состоянии SyD -гибридизации. По этой же причине пиридин — более слабое основание (р/С 9), чем ароматические амины (р,/(ь — 4), хотя и образует соли с сильными кислотами, однако более сильное основание, чем пиррол рКь— 14), поскольку неподеленная пара электронов атома азота в пиридине в сопряжение не включена. [c.320]

    В ряде работ [305, 306] показана корреляция между ингибирующими свойствами производных анилина и пиридина в кислотах и полярностью их заместителей, характеризуемых константами Гаммета зависимость между электроноакцепторными свойствами заместителей в молекулах аминокислот, т. е. полярностью таких заместителей, характеризуемых константами Тафта, и защитными свойствами аминокислот. [c.298]

    Для полярной фазы получаются две прямые с разными углами наклона (рис. 2). Для анилиновых оснований характерен больший угол наклона (А1 Ун (х)/ 1° = 0,04 /1°С), чем для алкилзамещен-ных пиридина = 0,02 /ГС). Таким образом, коэф- [c.100]

    Алканы практически нерастворимы в воде и сами ее не растворяют, Так, в воде при 20 °С растворяется 2,065 % (по объему) бутана. В 100 г воды при 25 °С растворяется 0,005 г гептана, а в 100 г гептана в таких же условиях растворяется 0,0151 г воды. Алканы растворяют хлор, бром, иод, некоторые соли, например фторид бора (И1), хлорид кобальта (II), хлорид никеля (II), некоторые модификации серы, фосфора, хорошо растворимы в углеводородах и их галогенпроизводных, а также в простых и сложных эфирах. Хуже растворимы в этаноле, пиридине, алифатических аминах мало растворимы в метаноле, ацетоне, фурфуроле, феноле, анилине, нитробензоле и др. Практически нерастворимы в глицерине, этиленгликоле. Как правило, растворимость алканов падает с увеличением числа полярных групп в растворителе и возрастает с увеличением длины его углеродной цепи. [c.192]

    Позднее Роршнейдер предложил оценивать полярность жидких фаз по разности индексов удерживания Ковача на полярных и неполярных фазах для пяти соединений различных классов. В качестве эталонов рекомендуется использовать следующие вещества с различными функциональными группами бензол, этанол, метил-этилкетон, нитрометан, пиридин. Индексы Ковача для них определяют на сквалане и на той неподвижной фазе, полярность которой нужно определить. Затем определяют разность индексов, полученных на полярной фазе и на сквалане, эту разность делят на 100  [c.207]


    Эти данные, полученные для бензола, этанола, метилэтилкетона, нитрометана и пиридина, позволяют более широко охарактеризовать полярность неподвижных жидких фаз, учесть индукционное взаимодействие донорно-акцепторное взаимодействие, ориентационное взаимодействие и водородную связь. [c.207]

    Свойства подвижной и неподвижной фаз. При подборе подвижной и неподвижной фаз, а также носителя необходимо учитывать их свойства. Если носителем является гидрофильное вещество, то в качестве неподвижного растворителя применяют воду, а в качестве подвижного— органический растворитель. Например, для разделения смесей полярных веществ (аминокислот, производных пиридина и других) применяют полярный неподвижный растворитель — воду, который хорошо удерживается на таких гидрофильных носителях, как силикагель, порошок целлюлозы и др. Подвижной фазой в этом случае может служить насыщенный водный раствор фенола, н-бутанол и др. Если же носитель— гидрофобное вещество, то неподвижным растворителем должно быть неполярное вещество (масло, керосин, бензол, парафин), а подвижным — полярные органические вещества и вода. Разделение происходит вследствие различной растворимости компонентов в неподвижной фазе. [c.282]

    Для разделения полярных соединений на щелочных носителях для разделения пиридинов, аминов и других азотсодержащих соединений Для разделения легких и средних углеводородов, СО2, Нг5 и др. [c.104]

    Если по условиям опыта необходимо разделенные в колонке вещества перевести в фильтрат, применяют растворители, вытесняющие адсорбированные вещества из колонки. Хорошими вытеснителями на полярных адсорбентах являются спирты, эфиры, пиридин и др. Часто практикуется последовательное промывание колонки с полученной на ней хроматограммой рядом растворителей с постепенно увеличивающейся десорбционной способностью, например промывают колонку петролейный эфиром, затем бензолом, этиловым эфиром, хлороформом и т. д. При этом последовательно вытесняются отдельные компоненты смеси. [c.21]

    При использовании в качестве носителя гидрофильного вещества неподвижным растворителем является вода, подвижным — органический растворитель. Например, для разделения смесей полярных веществ (аминокислот, производных пиридина и др.) применяются сорбенты, хорошо удерживающие полярный неподвижный растворитель (воду) — силикагель и порошок целлюлозы. Подвижной фазой может служить насыщенный водный раствор фенола и другие вещества. [c.73]

    Хроматограф с ионизационно-пламенным детектором, интегратором и термостатом, достаточно большим для размещения в нем до шести хроматографических колонок. Шкала электрометра переменная, в диапазоне от 2-10 до 2 X X Ю А, расходы водорода и воздуха 40 и 450 мл/мин соответственно. Оба канала испарителя хроматографа связывают с двумя сериями из трех колонок, закрепленных на одной монтажной плате и соединенных последовательно с помощью тройников, через свободные штуцеры которых часть газового потока, выходящего из первой и второй колонок, направляется в детектор (рис. IV.4). В каналы испарителя вводят фторопластовые вкладыши. Тем самым достигается заметное улучшение формы ( симметризация ) пиков полярных тест-веществ, особенно пиридина, что положительно сказывается на воспроизводимости и точности получаемых результатов. [c.275]

    Объекты хроматографирования-. 1. Метан (или бытовой газ), разбавленный азотом. 2. Тест-вещества (бензол, бутанол-1, пентанон-2, нитропропан, пиридин). 3. Реперные н-алканы (при работе с 1-й серией неполярных колонок — С(—Се, при работе со 2-й серией полярных колонок - Сю-С14). [c.276]

    Но если такой расчет все-таки произвести, то получится, что од,тах= = 0,95 къТ к разность энергий дипольного взаимодействия при параллельном и антипараллельном расположении диполей двух соседних молекул пиридина в жидкой фазе при 300 К составляет около 2 кв Т, что по порядку величины близко к энергии слабого химического взаимодействия молекул. Такого рода совпадение (при отсутствии до недавних пор надежных экспериментальных методов исследования слабых химических взаимодействий) является одной из причин того, что влияние дипольного взаимодействия между молекулами в жидкой фазе сильно переоценивалось. Другая причина, как будет показано в гл. II, состоит в том, что при описании межмолекулярных взаимодействий обычно не учитывалось влияние реактивного поля, создаваемого полярными молекулами. [c.22]

    Энергия поляризационного взаимодействия между молекулами примерно на порядок меньше энергии лондоновского и дипольного взаимодействия. Например, для двух молекул пиридина при Я = 2 нм, о 1,6- 10 кк Т при 300 К- Тем не менее, поляризационное взаимодействие между молекулами оказывает существенное влияние на свойства полярных жидкостей. Полярная молекула поляризует всю окружающую ее массу молекул и создает (индуцирует) в этом окружении некоторый дипольный момент А[х, величина которого зависит от поляризуемости и диэлектрической проницаемости среды. Поляризация окружающей среды создает поле ( реактивное поле) в том элементе объема, где находится полярная молекула. В результате происходит дополнительная поляризация полярной молекулы. Реакция окружающей среды на присутствие в ней полярной молекулы приводит к появлению реактивного поля, действующего на молекулу. В итоге возникает существенный дополнительный вклад в энергию взаимодействия полярных молекул со средой. Нетрудно понять, что этот вклад пропорционален числу молекул в единице объема. Он значителен в жидкой фазе и мал в разреженных парах. Влияние этого фактора будет рассмотрено в гл. П. [c.29]


    Применение формул (7.21) — (7.23) оправдано только для относительно больших Я. При непосредственном контакте важную роль играет перекрывание электронных оболочек молекул. При этом выделение отдельных типов межмолекулярного взаимодействия становится некорректным, их следует рассматривать в совокупности. Формулы (7.21) — (7.23) могут быть, таким образом, использованы лишь для оценки энергий взаимодействия пар молекул в газовой фазе на больших расстояниях. Рассмотрение конкретных молекул показывает, что индукционное взаимодействие в газовой фазе обычно составляет от О до 5—7% суммарной энергии и может в первом приближении не учитываться. Вклад дисперсионных и ориентационных сил определяется ди-полными моментами и геометрией молекул. Для воды преобладают ориентационные взаимодействия, для аммиака значение обоих сил приблизительно одинаково, для большинства неорганических и органических молекул, в том числе и таких полярных, как пиридин, основной вклад в энергию вносит дисперсионное взаимодействие. [c.344]

    Возможны реакции с соединениями, содержащими О для насыщенных спиртов возможно образование хвостов пиридины, хинолины и другие соединения, содержащие К, требуют добавки щелочи влияет на время удерживания полярных соединений оказывает высокое сопротивление потоку газа [c.81]

    Восприимчивость смесей пиридина с уксусной кислотой была изучена Венкатараманом [52]. Максимальное отклонение получилось для смеси, содержащей 60 молярн. % уксусной кислоты, для которой вычисленная восприимчивость равнялась — 0,569 10 6, а наблюдаемая — 0,588 10 6. Он объясняет это отношение тем, что как уксусная кислота, так и пиридин полярны, ассоциированы и асимметричны и, невидимому, образуют комплекс, содержащий три молекулы уксусной кислоты и одну молекулу пиридина. [c.66]

    Порфирины содержат в молекуле 4 пиррольных кольца и вст )ечаются в нефтях в виде комплексов металлов — ванадия и никеля. Установлено, что они обладают каталитической актив — носгью. Они сравнительно легко выделяются из нефти экстракцией полярными растворителями, такими, как ацетонитрил, пиридин, диметилформамид и др. [c.73]

    С повышением адсорбции присадок на металле. Например, высокая теплота адсорбции 4-этиллиридина и стеариш>вой кислоты обусловливает достаточно высокую эффективность их противоизносного действия при умеренных режимах трения на машине трения шар по диску (табл. 5.1). Полагают, что более высокая теплота адсорбции 4-этилпиридина по сравнению с пиридином и 2-этилпиридином объясняется образованием более прочной поверхностной пленки вследствие электронодонорного эффекта метильной группы, обусловливающего сдвиг электронной плотности к азоту. Если молекула адсорбата содержит в своем составе химически активные группы, отличающиеся повышенной полярностью или поляризуемостью в силовом поле металла, то величина адсорбции повышается. Так, более высокая теплота адсорбции стеариновой кислоты на стали по сравнению со спиртами объясняется интенсивным взаимодействием между карбоксильной группой и поверхностью металла, вплоть до образования химической связи. Это и определяет более высокие противоизносные свойства стеариновой кислоты по сравнению со спиртами. [c.257]

    Более перспективным методом концентрирования нефтепорфиринов представляется селективная экстракция их полярными растворителями. В качестве растворителей, используемых для экстракции, применяются этиловый спирт [597], ацетонитрил [816], пиридин [817], ДМФА [811]. Сравнительное исследование полноты извлечения металлопорфириновых комп. ексов этими растворителями [818] показало, что наиболее полное извлечение достигается при обработке нефти ДМФА. Полученный в результате экстракции концентрат требует дальнейшей очистки, для чего обычно используется метод колоночной хроматографии и препаративной ТСХ на окиси алюминия [802, 819]. [c.144]

    ПреДстайляют собой двухфазную колЛоиДнуЮ систему, состоящую из дисперсной фазы и дисперсионной среды, которые принципиально различаются по химической природе и структуре. Центральная часть мицеллы представляет собой гуминовое ядро, на поверхности которого расположены битумы (до 20% ядра), связанные с ним адсорбционными силами. Битумы, которые находятся в меж-мицеллярном пространстве, образуют непрерывную фазу, т. е. они являются дисперсионной средой, а гуминовые ядра играют роль дисперсной фазы. По данным Агде и Губертуса, неполярный бензол не может полностью разорвать связь между битумами и гуминовым ядром и поэтому выход битумов А сравнительно небольшой. Полярный пиридин разрывает эту связь и полностью извлекает битумы. Большой выход экстрактов при повышенных температурах (битумы В) объясняется образованием истинных и коллоидных растворов из-за пептизации гуминовых ядер. [c.213]

    На рис. 3 приведена зависимость относительных об йемов удерживания на полярной и неполярной фазах для азоторганических к оединений ряда пиридина и анилина. [c.101]

    В серии опубликованных работ [25—30] приведены результаты систематических исследований по выяснению влияния различных факторов на направление и скорость протекания реакций химической модификации концентратов асфальтенов, полученных из вакуумных нефтяных остатков по процессу Добен . Оптимизация процессов аминирования с использованием в качестве аминирующих агентов триалкиламинов (метил-, этил-и бутил-) и пиридина позволила получить высокие выходы нерастворимых сильноосновных анионитов (84—90%). При этом было показано, что с уменьшением молекулярных весов, с уменьшением содержания гетероатомов и с повышением степени конденсированности в исходных асфальтитах ускоряется реакция аминирования. Повышается скорость аминирования и с увеличением полярности растворителей. [c.262]

    Дефицит нафталина, возникший в шестидесятые годы, привел к созданию ряда схем получения нефтехимического нафталина методом гидрогенизационного деалкилирования метилнафталинов. Подробно эти процессы рассмотрены в монографии [79, с. 244— 277]. В качестве сырья используют высокоароматизированные фракции, выкипающие в интервале 200—300 °С и выделяемые из дистиллятов каталитического риформинга или каталитического крекинга. В зависимости от состава исходного сырья фракции выделяют ректификацией либо экстракцией полярными растворителями (гликоль, водный пиридин, фурфурол). [c.197]

    Пены находят широкое применение, в частности, в процессах флотации руд металлов, твердого топлива и других полезных ископаемых. Пенная флотация частиц минералов происходит вследствие их адгезии к пузырькам воздуха, которые вместе с частицами поднимаются на поверхность раствора. Порода хорошо смачивается водой и оседает во флотомашинах. Флотационные реагенты по характеру действия делят на три класса собиратели,регуляторы и пенообразователи. Собиратели способствуют адгезии частиц к пузырькам газа. Их молекулы имеют полярную часть, обладающую специфическим сродством к данному минералу, и неполярную — углеводородный радикал, который гидрофобизнрует поверхность частицы и обеспечивает ее сродство к пузырьку газа. Регуляторы применяют для увеличения избирательности флотационного процесса они изменяют pH (кислоты, щелочи), подавляют смачиваемость минералов и активизируют их флотацию (соли с флотационно-активными ионами), улучшают смачиваемость породы, уменьшают вредное влияние находящихся в пульпе ионов и т. д. Пенообразователи, или вспениватели, повышают дисперсность пузырьков и устойчивость пены. Обычно это соединения, содержащие в молекуле гидроксильные группы (спирты, фенолы), трехвалентный азот (пиридин, ароматические амины), карбонильную группу (кетоны). [c.351]

    В присутствии солюбилизата раствор ПАВ сохраняет коллоидно-мицеллярную структуру и обладает всеми признаками лиофильных дисперсных систем. Это отличает солюбилизацию от внешне сходного с ней явления гидротроп и и — эффекта повышения растворимости олеофильных веществ в воде в присутствии некоторых добавок (гид-ротропных агентов), которыми могут служить водорастворимые полярные органические вещества (например, соли низкомолекулярных карбоновых кислот, фенолы, пиридин, алкилбензолсульфонаты с короткой алкильной цепью). Гид- [c.69]

    Из этпх данных следует, что с повышением силы кислот и оснований увеличивается полярность образованного соединения. Так, полярность связей молекулярных соединений кислот с пиридином возрастет от (и = 2,93 для уксусной кнслоты до р, = 4,07 для монохлоруксусной и до = 10,1 для трихлоруксусной. [c.253]

    Как следует из теоретических и экспериментальных исследований автора по влиянию растворителей на силу кислот и из теоретических работ Соколова, вторая стадия процесса возможна только в достаточно полярной среде благодаря сольватации ионов и не возможна в вакууме, где более вероятной является диссоциация продукта присоединения не на ионы, а на молекулы. Систематические исследования взаимодействия кислот с основаниями в инертных растворителях выполнены Барроу с сотрудниками. На основании изучения инфракрасных спектров они показали, что уксусная кислота и ее галоидзамещенныс образуют с алифатическими аминами и пиридином два ряда продуктов присоединения неионизированные продукты присоединения, образованные за- счет водородной связи между кислотой и основанием, и ионизированные продукты присоединения, в которых водород уже передан основанию и образовал ионы. Последние вследствие низкой диэлектрической проницаемости растворителя не существуют самостоятельно, а включены в ионные нары. Мея ду катионом, полученным в результате передачи протона основанию, и анионом также,возникает водородная связь [c.293]

    Фториды хлора были рассмотрены ранее ( 2 доп. 13—17). Фтористый бром (ВгР) образуется из элементов с выделением тепла (10 ккал/моль). Связь Вг—Р характеризуется длиной (ВгР) = 1,76 А, энергией диссоциации 60 ккал/моль и силовой константой к = 4,0. Молекула ВгР полярна (р. = 1,29). Бромфторид очень нестоек и весьма химически активен (например, взаимодействует с кварцем и золотом). Значительно устойчивее его двойное соединение с пиридином. [c.277]

    Расчеты, приведенные в предыдущей главе, показывают, что энергия дипольного взаимодействия между полярными молекулами мала. Дипольные взаимодействия между молекулами не могут иметь существенного влияния на свойства жидких систем. Экспериментальные данные о свойствах жидкостей, содержащих полярные молекулы, на первый взгляд, противоречат этому заключению. В табл. 2 сопоставлены свойства трех пар жидкостей /пранс-дихлорэтилена с г ис-ди хлорэти-леном транс-дибромэтилена с цис-тбромэтиленом бензола с пиридином. В каждой из этих трех пар одна жидкость состоит из полярных молекул, а другая из неполярных. Первые две пары жидкостей состоят из молекул-изомеров. Молекулы бензола и пиридина имеют почти одинаковую молекулярную массу и одинаковое число электронов они близки по форме и межядерным расстояниям. Из табл. 2 следует, что при прочих сходных условиях полярность молекул сочетается с более вы- [c.36]

    Для представления набора функциональных групп, с которыми могут взаимодействовать полярные силы, были врлбраны 5 стандартных соединений бензол, этанол, бутанон-2, нитрометан и пиридин. Если разделить на 100 увеличение /уд каждого из этих соединений ио отношению к /уд на сквалане, получатся константы Рор-щнайдера — X, У, 2, и, 8 соответственно. Ниже приведены константы Роршнайдера для НФ карбовакс 20 М  [c.348]

    В зависимости от использованного растворителя относительная скорость изменяется следующим образом бензол—1, этилацетат — 11, метилэтилкетон — 59, ацетонитрил — 300, диметилформамид — 1950, дим.етилсульфоксид — 7200. Однако влияние растворителей на эту реакцию зависит не только от их полярности, но и от основности. При близкой полярности реакцию в большей степени ускоряют более основные растворители, способные служить акцепторами протона из а-комплекса. Например, диоксан ускоряет реакцию больше, чем бензол, пиридин больше, чем нитробензол и т. д. [c.163]

    Реакция обусловлена повышенной полярностью пиридина и его способностью координационно присоединяться к кислотам Льюиса. Первоначально образующийся анион трифенилметила вступает в обычные реакции карбанионов, например карбонилирования, алкилирования и дейтерообмена. Образование карбаниона из бензпинаколина или трифенилметана под действием Ь1А1Н4 в пиридине может быть обнаружено по появлению интенсивной окраски. [c.395]

    По разработанному ранее методу [35] определены средние структурные параметры молекул АС (табл. 18), содержащихся в продуктах хроматографического разделения и в АК-2. Средние молекулы продуктов разделения j—С4 АК-1 состоят в основном из двух структурных единиц Ша = 1,01—2,09, в каждой из которых сконденсированы 1,1—3,1 ареновых и 1,3—3,3 нафтеновых колец. Средняя степень ароматичности составляет 0,23—0,41. Количество ареновых колец в молекулах и средних структурных блоках увеличивается, а нафтеновых мало меняется при переходе от менее к более удерживаемым соединениям. Степень замещенности ареновых структур лежит в узких пределах (сТа = 0,47—0,63), а количество а-замещенных атомов углерода для отдельных блоков изменяется от 2,7 до 5,1 с увеличением силы растворителя. С учетом а- и Р-замещенных атомов углерода для отдельных блоков, вероятно, у аренового ядра присутствуют 1—3 метильных заместителя из количества атомов углерода, входящих в алифатические структуры, и 1—5 метильных групп, не связанных с ареновым кольцом. В среднем чпсло атомов углерода в боковых алифатических цепях макромолекулы, связанных с нафтеновыми кольцами, не превышает 18, а в одной структурной единице — 11. В 55—97% фрагментов средних молекул одно из ареновых колец является гетероароматическим. В наименее удерживаемых фракциях гетероареновое кольцо включает третичный азот. Все полярные фракции, кроме пиридинов, содержат циклические системы с двумя различными гетероатомами. [c.27]

    Исследованы НАС промышленной западно-сибирской нефти [15, 36]. Они представлены концентратами АК-4 и АК-5 (см. табл. 14). По сравнению с АК-5 в концентрате АК-4 больше содержится ареновых структур, азота и серы, меньше — кислорода. По результатам потенциометрического титрования соединения АК-4 характеризуются как слабоосновные, которые можно условно отнести к НАС. Пятая часть выделенных кислородных соединений СС представлена в основном тиофеновыми производными. В концентратах АК-4 и АК-5 содержалось относительно мало НАС, поэтому они были хроматографически сконцентрированы на силикагеле и разделены на оксиде алюминия (табл. 37). В пентано-бензольной фракции АК-4 сконцентрировались преимущественно арены и СС. Основная часть выделена спиртобензолом и бензолом. С увеличением полярности элюентов уменьшается протонодефицитность и увеличивается кислотность соединений. В бензольных фракциях сконцентрированы только НАС, а в спиртобензольной — основные и слабоосновные. Это несоответствие исходному концентрату можно объяснить, вероятнее всего, распадом ассо-циатов при хроматографическом разделении из разбавленных растноров. Можно предположить, что в образовании таких ассоциатов АС принимают участие вещества кислого характера. В АС присутствуют пирролы (поглощение в области 3460 см , проявляющееся в виде отдельного пика при разбавлении GI4), свободные группы ОН фенолов (3630 см ), пиридины (перегиб при 1560 см ), N-замещенные амиды (1600—1700 см в отсутствие поглощения при 3450—3400 м ). [c.56]

    Пятичленные циклические структуры. Отнесение полос поглощепия пиррола представлено в табл. 83 и на рис. 48. Полоса vNH около 3400 см является довольно узкой и характеристичной. Ее частота уменьшается примерно па 90 см" при образовании водородной связи. Эта полоса находится при большей частоте, чем тСН алканов. v = в пиридине поглощает, образуя две полосы в области 1600—1500 см . Валентные колебания vNH пиррола значительно изменяются с изменением концентрации и полярности растворителя. Разбавленные растворы пиррола и индола в неполярных растворителях дают узкие полосы вблизи 3495 см , а концентрированные растворы имеют широкие полосы около 3400 см" , соответствующие поглощению водородной связи соединенных молекул. Остается не совсем ясным вопрос о том, как возникает водородная связь в пирроле и индоле между группами N13 или между группой N13 и ареновым кольцом другой молекулы. Частоты валентных колебаний свободных vNH групп изменяются от 3500 (в гексане) до 3219 см" (в пиридине). Эти сдвиги следует объяснить специфическими взаимодействиями с раст- [c.141]


Смотреть страницы где упоминается термин Пиридин полярность: [c.320]    [c.670]    [c.78]    [c.363]    [c.208]    [c.91]    [c.556]    [c.59]    [c.274]    [c.59]    [c.20]    [c.172]    [c.293]   
Органическая химия (1979) -- [ c.176 ]




ПОИСК







© 2025 chem21.info Реклама на сайте