Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция и адсорбционные силы

    Адсорбционные явления, начиная с физико-механической адсорбции на поверхности раздела фаз и кончая капиллярной конденсацией, представляют сложную совокупность физических, химических и физико-химических процессов. В настоящее время нет единой теории, объединяющей все частные случаи сорбции на общей основе. Теория сорбции подразделяется на молекулярную, сорбцию Ленгмюра, основанную на валентной природе адсорбционных сил электрическую теорию адсорбции полярных молекул (теорию зеркальных сил, квантовомеханический учет дисперсионной составляющей адсорбционных сил) капиллярную конденсацию полимолекулярную адсорбцию Брунауера — Эммета — Теллера, теорию Юра — Гаркинса [25, 44, 69]. [c.66]


    Адсорбция. Природа адсорбционных сил [c.38]

    Природа сил, вызывающих адсорбцию, может быть различной. При адсорбции происходит концентрация молекул поглощаемого вещества па поверхности адсорб( нта под действием ван-дер-ваальсо-вых сил. Этот процесс часто сопровождается конденсацией паров поглощаемого вещества в капиллярных порах адсорбента, присоединением молекул поглощаемого вещества по месту ненасыщенных валентностей элементов, составляют,их кристаллическую решетку адсорбента, и другими процессами. Независимо от природы адсорбционных сил на величину адсо])бции влияют следующие факторы природа поглощаемого вещества, температура, давление и примеси в фазе, из которой поглощается вещество. [c.384]

    Равновесие вещества в газовой фазе и в адсорбционном слое на поверхности адсорбента подобно равновесию газа в поле тяжести, только роль гравитационного поля играет поле адсорбционных сил, очень быстро убывающих с расстоянием от поверхности адсорбента. При адсорбции газов образуется мономолекуляр-ный адсорбционный слой толщина слоя определяется размерами молекул адсорбата и их ориентацией у поверхности. [c.439]

    Этот потенциал характеризует работу против адсорбционных сил. Каждой точке изотермы адсорбции соответствуют определенные значения А и p/ps, которые позволяют получить значения V и г, т. е. найти зависимость адсорбционного потенциала от объема адсорбата на адсорбенте — потенциальную кривую адсорбции. [c.141]

    При сужении пор адсорбционные силы сближающихся стенок пор складываются, причем потенциал дисперсионных сил всегда увеличивается. Это приводит к увеличению энергии адсорбции, в особенности для молекул с большой поляризуемостью, например больших по размерам молекул углеводородов и их производных. Энергия адсорбции паров гексана и бензола на силикагеле заметно увеличивается при сужении его пор до 50—40 Л- При адсорбции малых по размерам молекул, таких, как молекулы азота и метанола, энергия адсорбции заметно изменяется лишь при сужении пор до размеров, меньших 30 А. В случае адсорбции воды на силикагеле сужение пор до 25 А на энергии адсорбции практически еще не сказывается. [c.517]

    Это выражение показывает, что константа Генри для адсорбции определяется в основном потенциальной энергией адсорбционных сил. [c.510]

    Имеется несколько теорий физической адсорбции, из которых рассмотрим прежде всего теорию мономолекулярной адсорбции. Теория эта была предложена в 1915 г. американским ученым Ленгмюром, но, как отмечает сам Ленгмюр, им использованы представления об адсорбционных силах, впервые выдвинутые русским ученым Л. Г. Гурвичем. [c.88]


    Различают физическую, или вандерваальсовскую, адсорбцию и химическую адсорбцию, или хемосорбцию. При физической адсорбции адсорбционные силы имеют ту же природу, что и силы Ван дер Вааль-са, вызывающие конденсацию газа. Физическая адсорбция всегда обратима. При химической адсорбции адсорбционные силы имеют химическую природу. Хемосорбция обычно необратима. [c.36]

    Цель исследования теплот адсорбции — проверка прежде всего теорий адсорбционных сил, без которых нельзя подойти к построению количественной теории адсорбции. Адсорбционные силы измерить прямо не удается. Они однако проявляются через энергию [c.111]

    Поскольку при адсорбции дисперсионные силы действуют между атомом аргона и всеми атомами адсорбента, а не только с одним из них, адсорбционный потенциал Ф получается суммированием потенциала для взаимодействия атома аргона с каждым отдельным атомом углерода г по всем атомам углерода решетки графита  [c.488]

    Брунауэр, Эммет и Теллер пытались создать единую теорию физической адсорбции. Они рассматривают процесс адсорбции как образование на адсорбенте молекулярных слоев, которые составляют общую толщину адсорбционной пленки, и указывают, что нри любом равновесии на адсорбенте имеются различные толщины пленки. Таким образом, к действию адсорбционных сил, исходящих от поверхности адсорбента, присоединяются силы взаимного притяжения Ваи-дер-Ваальса между молекулами адсорбированного вещества. На основании этого предположения выводится уравнение изотермы  [c.401]

    Для поверхностной сорбции (адсорбции) в порах переходного типа можно ограничиться выводами потенциальной теории, согласно которой адсорбированное вещество представляет конденсированную жидкую фазу, обладающую свойствами объемной жидкой фазы. Поверхность адсорбированной пленки соответствует одному значению адсорбционного потенциала Ч , численно равного работе адсорбционных сил по перемещению единицы количества вещества из газовой объемной фазы с давлением Р к поверхности адсорбированной пленки, давление над которой принимается равным давлению насыщенного пара Ру при температуре Т. Таким образом, действие сил поля с потенциалом эквивалентно дополнительному давлению, приложенному к адсорбированной пленке АР = Ру Т)—Р. [c.47]

    В общем случае пептизация происходит под влиянием адсорбции дисперсионной среды или пептизаторов. Адсорбционные силы преодолевают более слабые силы сцепления между частицами, причем образующиеся адсорбционно-сольватные слои препятствуют коагуляции частицы. В результате пептизации гель может перейти в золь. [c.524]

    Уравнение (И1.6) было использовано Лондоном, а затем и другими учеными для экспериментального доказательства дисперсионной природы адсорбционных сил и связи энергии адсорбции со свойствами адсорбированных молекул и адсорбента. [c.111]

    Явления адсорбции особо характерны для твердых веществ, так как они сопротивляются растяжениям и сжатиям при воздействии других молекул. В твердых веществах частицы закреплены в определенных положениях. Это значительно усложняет изучение адсорбции на твердых поверхностях в силу неоднородности их структуры. Если мениск жидкости представляет совокупность выступов и впадин глубиной в среднем 1—2 молекулярных диаметра, то поверхность твердых вешеств представляет очень сложный горный ландшафт и она не эквипотенциальна (подробнее см. стр. 107). При приближении молекулы газа к твердой поверхности проявляются силы притяжения, растущие с уменьшением расстояния до известного предела. Пространство, в котором эти силы проявляются, называется полем сил. В случае адсорбции молекулярные силы поверхности называют адсорбционными силами, а поле действия их—полем адсорбционных сил. [c.101]

    При адсорбции газов н паров на поверхности адсорбентов образуется не только мономолекулярный, но и полимолекулярный адсорбционный слой. Такая адсорбция возможна, если адсорбционные силы действуют на расстояниях, превышающих размеры молекул. Этим свойством обладают силы Ван-дер-Ваальса. Энергия молекулярного притяжения U пары молекул убывает, как известно, ио закону U=—Л/г , где г — расстояние между центрами молекул и А — константа, зависящая от природы молекул. [c.40]

    На расстояниях, больших ОВ, силы адсорбции практически не проявляются. При уменьшении расстояния между молекулой и поверхностью потенциальная энергия молекул убывает, достигая минимума при расстоянии О А. С уменьшением О А резко возрастают отталкивающие силы. Значения потенциальной энергии представляют работу, которую надо затратить внешним силам для перемещения молекулы из бесконечности (т. е. с расстояния, где не действуют адсорбционные силы) в данную точку поля. [c.102]

    И адсорбцию, необходимо отметить, что в природе не существует каких-то особых адсорбционных сил [48]. Это утверждение можно в общих чертах считать справедливым, однако автор не учел особую природу сил, действующих на проводящих поверхностях, которые рассмотрены в настоящем разделе, а также в разделе V, 7, В создании этих сил важную роль играют электроны проводимости. Поскольку эти электроны принадлежат проводящему телу как одному целому, а ме отдельным его атомам, то законно говорить об особых адсорбционных силах. [c.45]


    Адсорбция предполагает возникновение более высокой концентрации ингибитора на поверхности раздела твердой и жидкой фазы. Имеющаяся в молекуле ингибитора полярная группа обусловливает возникновение адсорбционных сил сцепления между ато.мами металла и молекулами ингибитора. [c.114]

    Явления адсорбции в процессе комплексообразования. При приближении к поверхности кристалла карбамида молекулы н-алкана она адсорбируется на этой поверхности при этом кристалл-карбамида получает достаточно энергии для перехода из тетрагональной форумы в гексагональную. Калориметрическим методом была определена [16] теплота адсорбции н-октана арбамидом с размерами частиц 0,1-0,15 мм. Авторы этой работы установили, что теплота адсорбции н-алкана на твердой поверхности карбамида несколько больше вычисленной теплоты образования комплекса, составляющей 6,7 кДж на одну метильную группу. Поэтому они считают, что н-алканы удерживаются в решетке адсорбционными силами. В работе [8]явление адсорбции отрицается. [c.46]

    В процессе адсорбции газа твердым телом устанавливается равновесие. Такое равновесие подобно равновесному состоянию газа в поле тяжести. Разница только в том, что в случае адсорбции роль гравитационного поля играет поле адсорбционных сил, весьма быстро убывающих с расстоянием от поверхности адсорбента. [c.97]

    По мере увеличения давления растет толщина слоя конденсата, увеличивается его объем и адсорбция завершается заполнением всего адсорбционного объема Уо=5бо, определяемого удельной поверхностью адсорбента и толщиной слоя, в пределах которого адсорбционные силы могут удерживать газ в конденсированном состоянии (см. рис. 20). [c.42]

    Для объяснения явлений адсорбции существуют различные теории. Одна из них — физическая теория, согласно которой природа адсорбционных сил чисто физическая и связана с проявлением межмолекулярных сил. Согласно химической теории ненасыщенные силы адсорбционных поверхностных слоев являются химическими (валентными) силами. [c.347]

    Взаимодействие молекул адсорбтива с поверхностью адсорбента при физической адсорбции может обусловливаться различными причинами. Рассмотрим кратко эти причины, так как подробное рассмотрение адсорбционных сил выходит за рамки [c.85]

    Однако поскольку при адсорбции дисперсионные силы действуют одновременно между каждой неполярной частицей, например атомами аргона, и всеми близлежащими атомами адсорбента, суммарный потенциал Ф адсорбционных сил приближенно может быть получен суммированием потенциала парных взаимодействий атома аргона с каждым отдельным атомом адсорбента по всем его атомам с учетом потенциала сил отталкивания  [c.86]

    Различают физическую, или ван-дер-ваальсову, адсорбцию и химическую адсорбцию, или хемосорбцию. В первом случае адсорбционные силы имеют ту же природу, что и межмолекулярные, или ван-дер-ваальсовы, силы. Физическая адсорбция всегда обратима. При химической адсорбции адсорбционные силы имеют химическую природу. Хемосорбция обычно необратима. В нашем курсе мы будем рассматривать, главным образом, физическую адсорбцию и лишь в соответствующем месте укажем на принципиальное различие между обоими видами адсорбции. [c.81]

    Четкость выделения зон адсорбции зависит от природы разделяемой смеси и адсорбента, а также от условий проведения процесса температуры, давления, скорости подачи разделяемого потока. При хорошей дифференциации зон адсорбции появление компонентов в выходном потоке строго последовательно при этом говорят о хроматографическом разделении исходной смеси. В промышленных условиях хроматографического разделения, как правило, не происходит, такая цель и не ставится обычно решается задача извлечения из исходной смеси одного или нескольких целевых компонентов. В последнем случае процесс ориентируется на извлечение ключевого компонента — наименее сорбируемого из целевых. Появление ключевого компонента в выходном потоке является сигналом о необходимости прекращения процесса адсорбции. В силу обратимости процесса адсорбции адсорбированные компоненты можно удалить из слоя адсорбента, т. е. десорбировать. На процесс десорбции особое влияние оказывает повышение температуры слоя адсорбента и создаиие потока газовой (паровой) фазы — десорбирующего (регенерационного) потока. В результате осуществления процесса десорбции получают целевые компоненты в виде продукта и регенерированный (освобожденный от адсорбированного вещества) адсорбент. Слой адсорбента, таким образом, последовательно переходит из цикла адсорбции в цикл регенерации. Цикл регенерации, в свою очередь, подразделяется на стадию нагрева (собственно десорбция) и стадию охлаждения (снижение температуры слоя адсорбента до температуры адсорбции). В соответствии с этими стадиями адсорбционного процесса путем последовательного переключения перерабатываемого потока с одного адсорбционного аппарата на другой организуется непрерывный производственный процесс. [c.93]

    При адсорбции молекулы газа или пара концентрируются на поверхности адсорбента под влиянием молекулярных сил притяжения. Этот процесс часто сопровождается химическим взаимодействием, а также конденсацией пара в капиллярных порах твердого адсорбента. Общепризнанной теории адсорбции еще нет. Согласно широко распространенному взгляду, адсорбция происходит под действием электрических сил, обусловленных взаимодействием зарядов молекул адсорбента и по1лощае-мого вещества. По другой теории адсорбционные силы носят химический характер и природа их объясняется наличием свободных валентностей на поверхности адсорбента. [c.713]

    По Полянн на поверхности адсорбента нет активных центров, а за счет поверхностных адсорбционных сил формируется адсорбционный объем, состоящий из полимолекулярных слоев адсорбируемого вещества. Адсорбционный потенциал н полимолекулярном слое снижается от максимального [> первом слое поверхности до нуля в последнем слое, в котором кончается действие адсорбционных сил. Теория Поляни не дает возможности математически описать ураинение изотермы адсорбции. [c.55]

    Для физической адсорбции характерно взаимодействие адсор-беита и адсорбата за счет сил Ваи-дер-Ваальса и водородных связен эти адсорбционные силы обеспечивают притяжение. На о".еиь близком расстояиш проявляются короткодействуюн ие силы отталкиваиия.  [c.109]

    II углерода и атома аргона с иоверхностыо графита от расстояния. Кривые 1 и 2 подобны, однако действие адсорбционных сил простирается на более дальнее расстояние. При расчете кривых расстояния X г были выбраны произвольно. В точке минимума кривых производные dU dx = О, т. е. сила взаимодействия F = = dil/dx = О, что означает равновесие адсорбции в данной точке, Потенциал Л1 .я энергия системы в точке минимума приблизительно равна энергии адсорбции или десорбции. [c.111]

    В отличие от поверхности полярных адсорбентов, образованной ионами, поверхность активного угля образована электронейтраль-ными (ковалентная связь) атомами углерода и почти лщпена электрически заряженных центров, аполярна. Вследствие этого электростатические силы имеют при адсорбции на угле второстепенное, очень малое значение. Основными же адсорбционными силами являются силы дисперсионные, наиболее слабые из прочих сил молекулярного взаимодействия. Этим объясняются многие свойства активных углей. [c.235]

    Предложенные теории адсорбции исходят как из представлений о химическом взаимодействии между адсорбируемым веществом и поглотителем и мономолекулярной адсорбции (Лэнгмюр), так и допущения о притйжении молекул поглощаемого вещества к поверхности адсорбента с силой, пропорциональной адсорбционному потенциалу е в данной точке (потенциальная теория Эйкена и Поляни). При этом величина е выражает работу, совершаемую адсорбционными силами при перемещении одной молекулы поглощаемого вещества иа бесконечности в данную точку адсорбционного пространства. Таким [c.567]

    Поверхность кристаллических адсорбентов вследствие их упорядоченного строения характеризуется периодичностью адсорбционных свойств. Поэтому на ней будет иметь место правильное чередование участков, в которых величина адсорбционных сил несколько превышает среднюю, и участков, где ее значение меньше. Следовательно, энергия адсорбции может быть различной в зависимости от того, расположена ли молекула над поверхностным ионом или она находится как раз над центром пхэверхностной элементарной ячейки. Если при динамическом равновесии вследствие флюктуаций тепловой энергии молекула может получить достаточное количество энергии, чтобы десорбироваться, то можно ожидать, что, получив меньшее количество энергии, она приобретет опособность двигаться от одной точки к другой, не теряя полностью контакта с поверхностью. [c.92]

    Следует еще раз подчеркнуть [188 , что все виды изотерм, обычно иснользуемы.х в качестве доказательства многослойной адсорбции, могут быть получены с мономолекулярнымн слоями в результате постепенного изменения адсорбционных сил на неоднородных поверхностях. Несмотря на это, метод БЭТ является весьма полезным для прак1ических целей. [c.118]

    Предполагается, гго адсорбционные силы, удерживающие хюлекулы ингибитора на поверхности металла, по своей природе могут быть физическими (силы электростатического сцепления, так называемые- Ван-дер-Ваальса) или химическими (валентной связью, образованной за счет пар свободных электронов, имеющихся в атомах азота, серы, кислорода, входящих в состав функциональной Пзуппы ингибитора). Первая связь является менее прочной и характеризуется малыми теплотами адсорбции. Пленка ингибитора, образованная за счет физической адсорбции, служит лишь барьером межд) металлом и афессивной средой и может быть легко удалена с [c.114]

    Адсорбция является одной из важных стадий гетерогенного катализа. Причем при адсорбции на поверхности катализатора происходят заметные изменения в структурно-энергетическом состоянии молекул, которые повыпуают их реакционную способность. Деформация и ослабление химических связей в молекулах, попавших в сферу действия адсорбционных сил поверхности катализатора, возможны только при хемосорбции. Именно хемосорбция определяет механизм гетерогенного катализа. Хемосорбированные мономолекулярные слои реагирующих веществ могут рассматриваться как специфические поверхностные промежуточные соединения, которые вследствие своей неустойчивости обладают реакционной способностью. [c.164]

    Известно несколько теорий физической адсорбции, из которых интерес представляет теория мономолекулярной адсорбции Ленг-мюра (1915). В построении ее ученый опирался на представление об адсорбционных силах, которые впервые были высказаны русским ученым Л. Г. Гуревичем. Основные положения теории Ленг-мюра ,  [c.347]


Смотреть страницы где упоминается термин Адсорбция и адсорбционные силы: [c.21]    [c.448]    [c.511]    [c.519]    [c.111]    [c.6]   
Смотреть главы в:

Основы адсорбционной техники -> Адсорбция и адсорбционные силы




ПОИСК





Смотрите так же термины и статьи:

Адсорбционные силы

Адсорбционные силы и избирательность адсорбции органических молекул из водного раствора



© 2025 chem21.info Реклама на сайте