Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость реакции метод постоянных струй

Рис. 2. Схема прибора для изучения скорости реакции методом постоянной струи. Рис. 2. <a href="/info/855414">Схема прибора</a> для <a href="/info/1725355">изучения скорости реакции методом</a> постоянной струи.

    Перейдем к рассмотрению экспериментов. Нам уже известны свойства плазмы с точностью до порядка величины. При определении термодинамических свойств возможная точность расчета не выходит за пределы 2%. При расчетах коэффициентов переноса точность много хуже. Кроме того, чтобы избавиться от практически непреодолимых математических трудностей, мы ввели при расчетах довольно грубые допущения, обычно принимаемые и в других работах. Мы усредняли многие непостоянные величины, причем это делалось так, что оценить ошибки в конечных результатах невозможно. Возможна ошибка в 2 раза, хотя многие считают используемую нами теорию не такой уж плохой. В какой степени положение может быть исправлено экспериментом Если бы мы имели материал, способный работать при 20 000 К, то все эксперименты были бы чрезвычайно просты. Измерив градиент давления при изотермическом ламинарном течении плазмы в трубе, можно определить вязкость. Эксперименты по теплообмену позволили бы определить теплопроводность и электропроводность, измеряя другие параметры. Из-за отсутствия необходимых для этого высокотемпературных материалов мы воспользуемся другим методом, который, возможно, позволит нам использовать наш теоретический аппарат для предсказания результатов эксперимента. В этом методе в сущности нет ничего нового. Еще до постановки экспериментов по определению вязкости обычных жидкостей (например воды) была принята гипотеза о прямой пропорциональности величины касательных напряжений градиенту скорости. Затем на основании этой гипотезы была получена теоретическая формула, описывающая ламинарное течение в трубе. Совпадение полученных теоретических результатов с экспериментом позволило считать вязкость физической константой, имеющей вполне определенный смысл. Этим же путем следовало бы идти и в случае плазмы, но отсутствие подходящих конструкционных материалов не позволяет осуществить изотермические условия. Тем не менее мы попытаемся воспользоваться этим же методом, ставя простые эксперименты, результаты которых можно предсказать теоретически, а затем попытаемся скорректировать теорию. Оказывается, что лучше всего использовать обычную струю плазмы, получаемую в определенных условиях. В струе плазмы, вытекающей из сопла плазматрона, температура очень сильно изменяется и по длине и по сечению струи. Если же взять трубу и разместить электроды на ее торцах, то осевого градиента температуры быть не должно. Следовательно, задача из двумерной превращается в одномерную. Для получения стационарной дуги необходимо охлаждать стенки трубы водой, поддерживая их температуру постоянной. Для плазмы при атмосферном давлении трудно придумать эксперимент проще. Теперь надо решить, какое вещество использовать в качестве рабочего тела. Конечно, для наших целей не годятся воздух, вода и даже водород, так как в водородной плазме содержится слишком много компонент На, Н, Н+ и е . Если не удастся достигнуть локального равновесия, то необходимо рассматривать по крайней мере четыре независимые группы уравнений с соответствующим числом соотношений для скорости реакций. Лучше с этой точки зрения применить гелий при 6 83 [c.83]


    Выше была рассмотрена теория реакций в струе. Стру-евая техника может быть применена как к газовой, так и к жидкой фазам. Для проведения реакции необходимо иметь реактор, поддерживаемый при некоторой постоянной температуре и допускающий протекание реагентов через него с известной скоростью. Вещества, выходящие из реактора, анализируются любым удобным физическим или химическим методом. [c.40]

    В промышленности широко используется проведение реакций в струе газа, проходящего через реактор, который может быть или пустым, играя роль только области, где поддерживается постоянная температура, или заполненным слоем зер-неного катализатора. Примерами реакций, осуществляемых в потоке в промышленных масштабах, могут служить реакции термического и каталитического крекинга нефтепродуктов, каталитического алкилирования, иолимеризации, гидро- и дегидрогенизации углеводородов, дегидратации и дегидрогенизации спиртов, гидратации олефинов, галоидирования, нитроваиия охислами азота, синтеза аммиака, получения серной кислоты контактным способом, синтеза моторного топлива н т. п. Поэтому и лабораторные опыты по изучению кинетики многих в.ажных широко применяемых в промышленности реакций проводятся также в потоке. Вследствие того, что реакции этого типа проводятся обычно при постоянном давлении и сопровождаются в большинстве случаев изменением объема участвующих в реакции веществ, уравнения кинетики этих процессов должны отличаться от уравнений, выведенных выше для условия ПОСТОЯННОГО) объема. Кроме того, и сам метод расчета кон-стаит скоростей реакций, протекающих в потоке, должен отличаться от методов расчета констант скоростей реакций,осуществляемых при постоянном объеме, так как очень трудно определить время пребывания реагирующих веществ в зоне реакции (так называемое время контакта). [c.48]

    В первом случае реакцию проводят в сосуде постоянного объема (7 = onst) и следят за ее ходом по изменению во времени какого-нибудь физического свойства исследуемого газа, например, по изменению давления или поглощения света в соответствующей области спектра. Если в реакции не происходит изменения числа молекул (Ап—О, т. е. P= onst), о ходе ее можно судить по анализу продуктов реагирующей смеси в различные интервалы времени с помощью таких методов, как газовая хроматография, спектроскопия, масс-спектрометрия. В методе струи газ пропускают с определенной скоростью через реактор фиксированного объема и вычисляют затем среднее время пребывания газа в зоне реактора, а также измеряют скорость реакции путем анализа входящих и выходящих газов. [c.98]

    Проточные методы. К ним относится метод непрерывной струи, основанный на смешеьши реагентов в струе и предложенный для быстро протекающих реакций с периодом полупревращения 1/2 = 0,01-10 с. Другой вариант проточного метода применяют для измерения скоростей сравнительно медленно протекающих реакций с tia = 1-Ю мин. В этом случае проточная ячейка одновременно является и смесительной камерой. Исходные реагенты индикаторной реакции и анализируемый раствор, содержащий катализатор с концентрацией Скэт, непрерывно подаются насосами в смесительнуто камеру вместимостью около 10 мл, продукты реакции и реагенты вытекают со скоростью 2-20 мл/мин. При каждом значении с устанавливается постоянная концентрация индикаторного вещества и фиксируется по- [c.270]

    Теперь положение полностью изменилось. Первым большим успехом было введение Хартриджем и Роутоном в 1923 г, метода непрерывной струи . Это позволило исследовать реакции с временем полупревращения порядка нескольких миллисекунд, что в 10 — 10 раз меньше по сравнению с традиционными методами. Лимитирующим фактором была скорость смешивания. В последующие годы этот метод постоянно развивали его применили к реакциям гемоглобина и ферментов. Однако он не был сразу широко принят. [c.11]

    Метод непрерывной струи наиболее удобен, когда за реакцией следят при помощи детектора с большой постоянной времени (стр. 41) в других случаях обычно предпочитают метод остановленной струи (стр. 52). Наименьшее время полупревращения, которое можно определить методом непрерывной струи, составляет около 1 мсек . Наибольшее время полупревращения ограничивается минимальной скоростью, нри которой поток турбулентен (стр. 48) и составляет примерно 0,1 сек. Максимальная и минимальная константы скорости, которые можно определить, зависят также от величины изменения оптической плотности или другого свойства и от чувствительности детектора (см. табл. 3) уравнение для максимального значения было выведено Чансом [3, 35]. В настоящее время наиболее чувствительные фото-и, флуориметрические методы позволяют использовать растворы, разбавленные до 10 Ж, что должно обеспечить измерение высоких констант скорости второго порядка до 10 л-молъ сек [36]. [c.49]


    По обш ей схеме этот метод похож на метод непрерывной струи (рис. 7), за исключением того, что наблюдения проводят в фиксированной точке вблизи смесительной камеры, в то время как скорость течения жидкости постоянно меняется. Метод наблюдения должен быть быстрым, например фотометрический. В аппаратуре Чанса (рис. 10) растворы реагируюш их веш еств поме-ш ают в шприцы, поршни которых приводят в двин<ение вручную надавливанием на скользящий блок короткий резкий толчок вызывает ускоренный поток примерно в течение 0,1 сек. Время, прошедшее от начала реакции до момента наблюдения, обратно пропорционально скорости потока и, следовательно, постоянно убывает. Можно получить напряжение, пропорциональное скорости потока, преобразуя поступательное движение скользящего блока при помощи передачи во вращательное движение кругового потенциометра, соединенного с соответствующим дифференцирующим контуром. Это напряжение подают на Х-пластины осциллографа, а на У-пластины подают напряжение с выхода фотометра. Сфотографировав кривую на экране осциллографа, ее можно промерить и получить кинетическую кривую реакции. Опыт можно легко повторить, для чего требуется только 0,1 мл каждого раствора. [c.50]

    Метод остановленной струи требует быстрой регистрации это единственное суш ественное ограничение его применимости. Имея детектор с достаточно малой постоянной времени, метод остановленной струи можно использовать для исследования реакций с временами полупревраш,ения от нескольких миллисекунд до секунд или даже минут. Таким образом, он является более гибким, чем метод непрерывной струи, хотя его минимальное время полунревраш,ения немного больше. Для этого метода требуется значительно меньше жидкости (0,1—0,2 мл), что является большим преимуш еством в тех случаях, когда исходные вещества или растворители трудно приготовить или очистить.- Обычную форму аппаратуры можно термостатировать примерно от О до 50°. Аппаратура дает фотографическую регистрацию каждого опыта повторение осуществляется быстро и легко. Точность при определении констант скоростей этим методом примерно та же, что и при обычных кинетических измерениях (стандартное отклонение +1—2%, ср. табл. 3), и метод свободен от систематических ошибок. Сложность конструирования примерно такая же, как для более простых форм аппаратуры метода непрерывной струи (стр. 43—45), однако требуются еще фотоумножитель и осциллограф с фотоприставкой, либо какая-нибудь другая быстро детектирующая и записывающая система. Для точных кинетических исследований без специального исследования промежуточных соединений метод остановленной струи, вероятно, является наи- [c.56]

    Разработаны специальные методы непрерывной струи и остановленной струи , предназначенные для измерения скорости реакций при очень малых полупернодах реакции порядка 0,001 с. Для таких и несколько более быстрых реакций используются электрохимические и релаксационные методы, например метод температурного скачка или скачка давления. Постоянно ведутся поиски возможности повышения чувствительности и прецизионности методов. [c.421]

    По методу ускоренной струи растворы реагирующих веществ помещают в щприцы, порщни которых приводят в движение резким толчком в течение примерно 0,1 с. Наблюдение проводят в фиксированной точке вблизи смесительной камеры, при этом скорость течения жидкости постоянно меняется. Специальное автоматическое устройство связывает время протекания реакции со скоростью потока. Методика ускоренной струи позволяет использовать весьма малые объемы реагирующих веществ (до 0,1 мл), что является важным преимуществом при исследовании ферментативных реакций. [c.163]


Смотреть страницы где упоминается термин Скорость реакции метод постоянных струй: [c.205]    [c.110]    [c.31]    [c.444]   
Современная химия координационных соединений (1963) -- [ c.91 , c.92 ]




ПОИСК





Смотрите так же термины и статьи:

Постоянная см реакции

Струя



© 2025 chem21.info Реклама на сайте