Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетические методы проточные

    В лаборатории химической кинетики Физико-химического института им. Л. Я. Карпова проведено экспериментальное изучение кинетики парциального окисления и окислительного аммонолиза пропилена в НАК Кинетика изучалась проточно-циркуляционным методом. Одновременно были осуществлены физико-химические исследования катализаторов этих процессов, имеющих различный состав, методами рентгеноструктурного и термографического анализов, адсорбционными измерениями, измерениями контактной разности потенциалов (работа выхода электрона) и др. Получены кинетические уравнения, описывающие брутто-процесс окисления и окислительного аммонолиза пропилена, и уравнения скоростей образования целевых и побочных продуктов указанных реакций. Предложены упрощенная  [c.97]


    При исследовании катализаторов наиболее распространены проточные методы измерения каталитической активности [1—20]. В проточных установках поток реагентов пропускают с определенной скоростью через реакционный объем, содержащий катализатор, производя замеры параметров процесса и анализы состава на входе в реактор, на выходе из него и, по возможности, в различных точках этого объема. Проточные методы позволяют проводить кинетические исследования в установившихся условиях, т. е. при постоянстве исходных концентраций, температур, давлений, степени перемешивания и других параметров в каждом отдельном опыте. При переходе от одного опыта к другому изменяют определенные параметры процесса на заданную величину. [c.284]

    Детальное экспериментальное изучение химических реакций, лежащих в основе разрабатываемого процесса, — необходимое условие для получения его надежной кинетической модели. В случае быстро протекающих реакций (время полупревращения порядка от долей секунды до нескольких минут), которые реализуются в промышленности в виде непрерывных процессов, проходящих в проточных реакторах, метод исследования кинетики в периодически действующих изотермических реакторах, кратко изложенный в этой главе, непригоден. Изучение кинетики таких реакций, к которым относятся подавляющее большинство каталитических и все газовые реакции, проводят в специальных установках проточного типа. [c.35]

    Расчет каталитического процесса требует знания кинетики химического превращения, не осложненного процессами переноса тепла и вещества. Проточно-циркуляционный метод изучения кинетики является наилучшим для достижения этой цели. Проскок пузырей при исследовании этим методом кинетики в псевдоожиженном слое никак не может повлиять на точность кинетического уравнения. Кратность циркуляции в системе настолько высока, что любая молекула практически находится в контакте с катализатором одинаковое время. Однако наличие застойной зоны в лабораторном реакторе может привести к заниженным значениям константы скорости, поскольку в этой зоне катализатор не перемешивается и по существу представляет собой зерно большого размера. [c.351]

    Многочисленные методы исследования кинетики гетерогеннокаталитических реакций могут быть разделены на несколько групп, некоторые из них взаимно перекрываются. Прежде всего, различают динамические и статические методы, в зависимости от того, является ли реактор проточным или нет. В свою очередь, динамические методы могут быть проточными и проточно-циркуляционными. Другим важным принципом классификации кинетических методов исследования является математическая характеристика величин, получаемых в результате эксперимента. Если при проведении опыта непосредственно определяется скорость реакции, метод называют дифференциальным, если же определяется количество вещества, прореагировавшего за какой-то период времени или на каком-то участке реактора, то метод называют интегральным (поскольку полученные величины являются интегралом от скорости реакции по времени или длине слоя катализатора). Наконец, в зависимости от постоянства температуры опыта или вдоль слоя катализатора различают изотермические и неизотермические эксперименты. [c.401]


    Первыми стали использоваться диффузионно-кинетические методы, которые возникли в связи с потребностями широкого круга задач химической физики [18]. В этом случае величина вероятности рекомбинации атомов определяется как по изменению их концентрации, так и по измерениям теплового потока на образец. Диссоциация газа осуществляется с помощью микроволнового или тлеющего разряда и ее степень достигает нескольких процентов. Давление в установках изменяется от 10 до 5 Тор. К методам такого типа относятся методы бокового рукава или диффузионной трубки, методы проточного реактора, реакционного сосуда, пределов воспламенения и зажигания поверхности. Недостатком этих методов является то, что диапазон их применения ограничен малыми размерами образцов, низкими давлениями и температурами ниже 1000 К. [c.33]

    Кинетические уравнения, определенные различными методами проточным, проточно-циркуляционным), близки между собой. [c.157]

    Для изучения кинетики каталитических реакций служат два метода — проточный и проточно-циркуляционный. Проточный метод позволяет проводить реакцию в стационарных условиях. Однако прн этом принимается допущение, что движение газа в слое катализатора отвечает режиму идеального вытеснения. Это допущение приближенно выполняется только при малой скорости газового потока и высоте слоя катализатора, во много превышающей размер зерен. Поэтому при сопоставлении с экспериментальными данными кинетическое уравнение должно быть проинтегрировано по времени контакта, объему или высоте слоя катализатора. Проточный метод удобен и щироко распространен для массовых испытаний катализаторов, предварительной оценки их активности и получения кинетических характеристик в одинаковых условиях, когда важны прежде всего сравнительные, а не абсолютные величины. [c.277]

    Кинетические. Основной подход к решению проблемы ускорения анализа — проведение измерений в кинетическом режиме, т. е. в течение первых минут взаимодействия антигена с антителом. Как показывают эксперименты, переход к кинетическим режимам обеспечивает сокращение времени анализа до нескольких минут, при этом чувствительность методов определяется в основном нижней границей детекции маркера. Правда, использование кинетических методов требует высокой точности по времени выполнения всех стадий проведения анализа. Добиться этого можно при переходе к биохимическим автоанализаторам — современным роботам с программным управлением. Такие роботы уже созданы рядом зарубежных фирм и их реализация позволит существенно повысить чувствительность и точность анализа. Другим подходом в автоматизации иммуноферментных методов является использование проточного инжекционного анализа, который существенно упростит его инструментальное оформление. [c.120]

    При изучении реакции изомеризации н-пентана проточно-циркуляционным методом на алюмоплатиновом катализаторе, промотированном фтором, наблюдался обратный кинетический изотопный эффект при замене водорода на дейтерий [27]. Скорость реакции характеризовалась количественным порядком по водороду, равным 0,5, причем скорость обмена дейтерия в пентане в этих условиях выше скорости изомеризации. [c.26]

    При использовании проточного метода с неподвижным слоем катализатора в реакторе обычно допускают, что движение газа в слое катализатора отвечает режиму идеального вытеснения, т. е. пренебрегают радиальными градиентами давления, температуры, концентрации. Соответственно среднюю скорость процесса по высоте слоя Н или по времени контакта т (поскольку т пропорционально Н) определяют интегрированием кинетических уравнений (VI. 1) и (VI. 3). Аналитическое решение кинетических уравнений, как правило, возможно лишь с применением вычислительных машин. При их отсутствии прибегают к графическому дифференцированию зависимости х = /(т), что вносит погрешности. [c.284]

    Методы регрессионного анализа получили широкое распространение для оценки доверительных интервалов определения физико-химических параметров, входящих в теоретические уравнения, по экспериментальным данным. Например, в проточно-цир-куляционных реакторах непосредственно измеряется скорость реакции, что позволяет, прибегнув к линеаризации кинетического уравнения, определить затем кинетические коэффициенты линейного уравнения методами регрессионного анализа. [c.33]

    МЕТОДЫ ОПРЕДЕЛЕНИЯ КИНЕТИЧЕСКИХ ВЕЛИЧИН ДЛЯ РЕАКЦИЙ, ПРОВОДИМЫХ В ПРОТОЧНОМ РЕАКТОРЕ [c.160]

    Наиболее простым и распространенным методом изучения кинетики реакций, осуществляемых в потоке, является исследование изменения степени превращения х при изменении скорости подачи реагента в реактор о- Результаты такого исследования обычно представляют в виде таблиц или графиков типа х = f (hq). Кинетические уравнения для скоростей проточных реакций, предложенные Г. М. Панченковым [7] (см. гл. III), имеют вид для гомогенных реакций [c.160]

    Приведенные выше (стр. 160) методы расчета скоростей энергий активации и порядков проточных реакций могут быть использованы для определения вида кинетического уравнения. С этой целью величины скорости реакции при различных составах смеси, найденные графическим или численным дифференцированием экспериментальных зависимостей, аппроксимируют кинетическим уравнением, структура которого выбирается заранее. При этом соответствие величин, полученных из эксперимента, выбранному кинетическому уравнению проверяют постоянством кинетических коэффициентов. [c.170]


    Введение наблюдаемого порядка реакции. В этом случае показатель степени концентрации определяют не из стехиометри-ческого уравнения, а подбирают по данным эксперимента. В обш,ем случае кинетическое уравнение имеет вид (У 1-14), а для реакции аА + ЬВ сС + д,0 его следует записать в виде IV = рассматриваемом случае из эксперимента должны быть подобраны как к, так и г а, г в, Гс, Гц. Методы их определения для реакций, проводимых в замкнутом объеме, приводятся в учебниках по химической кинетике, а для высокотемпературных проточных реакций, имеющих техническое значение, были рассмотрены выше (стр. 160). [c.173]

    Для решения задачи выбора (дискриминация) вида кинетической модели следует сопоставить два метода кинетических исследований. Сравнение методов можно проиллюстрировать на примере сопоставления показателей процесса конверсии метана в проточной и без-градиентной установках. Зависимости скорости реакции от степени превращения приведены на рис. 1.10, а. Кинетические модели для прямой реакции 7, соответствующие кривым 1, 2,3  [c.23]

    Проточный метод, позволяющий получать информацию о скорости реакции в интегральной форме, не дает возможности однозначно судить о структуре кинетической модели. Интегральная форма модели мало чувствительна к значительным изменениям ее дифференциальной формы. Поэтому дальнейшее изложение относится только к планированию эксперимента для безградиентного метода определения скорости химических реакций. [c.467]

    Существует много различны.х методов определения кинетических характеристик [1—4], которые могут быть разделены на две основные группЬ 1) статические, осуществляемые в закрытых системах и 2) проточные — в открытых системах. [c.282]

    Последовательность работ при составлении кинетических уравнений можно выразить с помощью схемы (рис. 27). Методы исследования и обработки указанных уравнений существенно зависят от того, на каких установках получены экспериментальные данные. В большинстве случаев кинетический эксперимент проводят в проточно-циркуляционном реакторе Однако иногда этот эксперимент выполняют в интегральном изотермическом реакторе. [c.84]

    На практике химические газофазные процессы обычно осуществляются непрерывно в проточных реакторах в так называемых динамических условиях. В отличие от рассматривавшихся до СИХ пор закрытых (статических или замкнутых) систем, в которых реакции протекают при постоянном объеме, в открытых (проточных) системах процессы протекают при постоянном давлении. Статический метод позволяет проследить в течение одного опыта зависимость скорости процесса от концентрации реагирующих веществ в широком интервале их изменений и потому особенно пригоден на начальной стадии исследования кинетики процесса. Динамический метод позволяет быстрее накапливать продукты реакции и при установлении стационарного состояния, когда состав выходящей из реактора смеси продуктов становится постоянным, получать пов-торимые кинетические данные, значительно более надежные, нежели единичная точка на кинетической кривой опыта в статических условиях. [c.251]

    Кинетические исследования процесса ароматизации легких углеводородов осуществляли в изотермическом режиме на установке проточного типа. Катализатором для данного процесса являлся цеолитсодержащий катализатор ЦСК-5 ( с силикатным модулем, равным 40), модифицированный цинком методом пропитки по водопоглощению из раствора азотнокислого ципка с последующими сушкой и прокаливанием в токе воздуха при 600°С в течение 8 часов. [c.10]

    В безградиентном реакторе измеряют скорости реакции, и поэтому показатели процесса в нем можно изобразить так, как показано на рис. 1.10, а. На рис. 1.10, а видно существенное различие получаемых результатов. В проточном реакторе измеряют степень превращения от времени контакта (рис. 1.10, б). При использовании результатов, полученных на проточном реакторе, кинетические модели практически не различимы, что еще раз подтверждает преимущество безградиентных методов в кинетических исследованиях и ограниченную применимость проточного метода. [c.24]

    Большинство мегодов исследования Г. к. основано на изучении зависимости состава реакц. системы от времени контакта реагентов с катализатором (см. Струевые ктетиче-ские методы. Статические кинетические методы, Проточно-циркуляционный метод, Псевдоожиженного слоя метод). Кинетач. данные позволяют судить о механизме [c.129]

    СТРУЕВЫЕ КИНЕТИЧЕСКИЕ МЕТОДЫ (проточные методы), используют для исследования кинетики и механизма р ций, определения активности и селективности катализаторов. При этом поток реагента (индивидуального в-ва или смеси его с инертным разбавителем) пропускают через термостатируемый. трубчатый реактор с катализатором или без него. Скорость потока м. 6. постоянной, нарастающей или мгновенно падающей до нуля соотв. различают методы непрерывной струи, ускоренной струи и остановленной струи. В каждом из методов определяют зависимость состава смеси продуктов или кол-ва образующегося (либо поглощающегося) при р-ции газа от времени пребывания реагента в зоне р-ции (времени контакта) для этого примен. хроматографич., электрохим.. Спектральные или др. методы анализа. Затем находят кинетич. ур-ние, описывающее зависимость скорости р-ции от конц. реагентов или зависимость степени превращ. от времени контакта, а по нему — константу скорости р-ции. В импульсном микрокаталитич. варианте С. к. м. реагент периодически вводят в поток газа-носителя, непрерывно пропускаемый через реактор с катализатором, анализируя продукты на выходе из реактора хроматографически. [c.548]

Рис. 5. Величины энергии активации Е, рассчитанные с помощью различных кинетических методов для реакции дегидратации МЗО-С3Н7ОН на АЬОз 1 — Е (кажущиеся), приближенно рассчитанные по глубине превращения в проточной установке при обычных условиях 2 — Е (истинные) для реакции дегидратации в адсорбированном слое Рис. 5. <a href="/info/503878">Величины энергии активации</a> Е, рассчитанные с помощью различных <a href="/info/18703">кинетических методов</a> для <a href="/info/20482">реакции дегидратации</a> МЗО-С3Н7ОН на <a href="/info/504652">АЬОз</a> 1 — Е (кажущиеся), приближенно рассчитанные по <a href="/info/25903">глубине превращения</a> в проточной установке при <a href="/info/219201">обычных условиях</a> 2 — Е (истинные) для <a href="/info/20482">реакции дегидратации</a> в адсорбированном слое
    С приведенными замечаниями мы не можем согласиться. В самом деле, как мы уже отмечали, анализ [422] показывает, что только равномерное и экспоненциальное распределение неоднородной поверхности может вести при наличии соотношения линейности к выражениям с дробными показателями степени в кинетических уравнениях. Поэтому не всякое широкое распределение, а только принимаемые теорией распределения, обосноианные экспериментом (например [153, 341]), ведут к опытным кинетическим уравнениям. В основе теории лежит предположение об адсорбции азота как лимитирующей стадии процесса (при небольшом удалении от равновесия). Это предположение вытекает из совокупности различных специальных исследований, упомянутых выше. Поэтому нельзя считать постулаты теории завуалированными, напротив, они весьма ясны. Отметим также, что после выхода в свет монографии [54] основное уравнение теории синтеза аммиака [уравнение (V.247)] было подтверждено многочисленными работами советских и зарубежных исследователей, упомянутых выше, использовавших для этой цели разные кинетические методы, в частности проточно-циркуляционный метод [522, 523, 525, 572, 1113, 1225]. При этом в разных работах, например [104, 522, 524] и других, выполненных различными авторами, были получены близкие значения констант скорости, в большинстве случаев совпадающие по величине или по порядку величины. [c.222]

    Применение непрерывных проточных или проточно-циркуляционных методов, широко используемых в гетерогенном катализе, не решает полностью проблему неизотермичности в экзотермических реакциях. Наиболее полно требованиям изотермичности удовлетворяют применяемые сравнительно недавно в гетерогенном катализе импульсные методы, высокая чувствительность, экс-прессность, практически идеальная изотермичность и другие достоинства которых в сочетании с возможностью математического моделирования позволяют значительно повысить эффективность и качество кинетических исследований. [c.108]

    Использование импульсного метода позволило экспериментально установить механизм протекания реакций и определить с достаточно высокой точностью кинетические константы отдельных реакций, составляющих суммарный каталитический процесс. Отличигельная особенность импульсного метода от традиционных проточных и проточно-циркуляционных заключается в том, что ставится прямой эксперимент по изучению кинетики реакции взаимодействия одного из компонентов реакционной смеси с восстановленным катализатором [c.108]

    ЭТОГО метода все же ограничивается областью малых парциальных давлений реагентов и относительно быстро протекающими ироцессами. Сложности возникают в том случае, если процесс адсорбция — десорбция протекает медленнее, чем поверхностные реакции. Правда, результаты, полученные с помощью этого метода, в редких случаях можно непосредственно сравнивать с данными, нрактически получаемыми в проточной системе в условиях реакции. Все же при исследованиях механизма каталитических реакций этот метод обладает значительными преимуществами в результате упрощения кинетических условий и возможности раздельного измерения адсорбционных и реакционных ступеней процесса. [c.472]

    Микрокинетические исследования позволяют определить маршруты реакций и выбрать наиболее достоверный и.з них, а также рассчитать порядок и константы скоростей реакций. Эти исследования проводят в лаборатории таким образом, чтобы изучить кинетику химической реакции в чистом виде , без влияния условий перемешивания реагентов, тепловых и диффузионных эффектов и дифференциальных, проточно-интегральных или циркуляционных реакторах. При постановке лабораторных микрокинетических исследований опыты осуществляют с использованием современных научных методов экспериментирования — направленного многофакторного эксперимента, при котором одновременно изменяют несколько наиболее существенных параметров и целенаправленно обеспечивают выход процесса в оптимальны11 режим . При проведении микрокинетических исследований обязательно применяют ЭВМ, на которой быстро просматривают все возможные решения кинетических уравнений и выбирают наиболее достоверный маршрут химической реакции при разных температурных условиях. Использование научного метода направленного многофакторного эксперимента ЭВМ резко сокращает число необходимых опытов и позволяет определить оптимальные условия течения химической реакции. В связи с этим обязательной составной частью оборудования химической лаборатории должна быть ЭВ1 [ (на рис. УН-18 аналоговая машина). - [c.483]

    Задачи оптимизации определяют методы прикладных лабораторных исследовании. Перед экспериментатором ставится задача быстро и в широкой области исследовать кинетику процесса, которая в наиболее интересных случаях достаточно сложна. Суш ествуюш ие методы решения этой задачи не являются вполне удовлетворительными. Сейчас самым совершенным методом является получение кинетических зависимостей с помощ ью проточно-циркуляционных установок или других схем, которые позволяют вести опыт в аппарате идеального смешения со стационарным режимом. При этом один опыт дает скорость процесса только в одной точке — при определенных (причем, неизвестных заранее) значениях концентраций реагентов и температуры. Полное изучение процесса требует большого объема однообразной экснеримеитальной работы. Поэтому неудивительно, что нока суш ествуют лишь единичные процессы, кинетику которых можно считать в достаточной мере изученной. Мы не говорим уже о том, что медленность эксперимента не дает никакой возможности снять характеристики процесса, если они меняются во времени. [c.249]


Библиография для Кинетические методы проточные: [c.12]   
Смотреть страницы где упоминается термин Кинетические методы проточные: [c.548]    [c.444]    [c.63]    [c.254]    [c.129]    [c.193]    [c.342]    [c.136]    [c.254]    [c.24]    [c.64]    [c.402]    [c.81]    [c.30]   
Химический энциклопедический словарь (1983) -- [ c.548 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.548 ]




ПОИСК





Смотрите так же термины и статьи:

Кинетические методы

Методы определения кинетических величин для реакций, проводимых в проточном реакторе

Некоторые частные методы интегрирования кинетических уравнений в проточной системе



© 2025 chem21.info Реклама на сайте