Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ацетилен из ароматических углеводородов

    Механизм образования сажи (дисперсного углерода) при горении реактивного топлива и в общем случае при химических превращениях углеродсодержащих веществ изучен еще недостаточно. Исследователи основную роль отводят полимеризации или цепным разветвленным реакциям. В последнем случае физико-химическая модель процесса включает разветвленные цепные реакции образования радикалов-зародышей, превращение их в зародыши твердой фазы (минимальные частицы, имеющие физическую поверхность) и дальнейший рост зародышей за счет гетерогенного разложения углеводородов на их поверхности. Сторонники полимеризационной схемы отмечают, что образование ацетилена наблюдается даже в метано Кисло-родном пламени. После достижения максимальной концентрации ацетилен превращается в моно- и полициклические ароматические углеводороды и полиацетилен. Экспериментально показано также, что в соответствующих условиях появлению сажевых частиц предшествует образование (в результате полимеризации) крупных углеводородных молекул с молекулярной массой примерно 500. [c.168]


    Используя разнообразные методы разделения исходных материалов, а также наиболее современные процессы их переработки, получают важнейшие соединения, являющиеся непосредственным сырьем органического синтеза синтез-газ (смесь СО и Н2) насыщенные алифатические углеводороды (от метана до пентанов) индивидуальные моноолефины (от С2 и выше) и их смеси диолефины бутадиен, изопрен и др. ацетилен ароматические углеводороды бензол, толуол, ксилолы и пр. [c.161]

    Реакции глубокого окисления органических веществ катализируются переходными металлами и их окислами. Наиболее активны металлы платиновой группы и окислы железа, меди, хрома и других металлов. Отличительной особенностью процессов термокаталитической очистки яв ляется отсутствие системности в свойствах катализаторов и окисляемых веществ, поэтому можно рассматривать лишь некоторые их харак-те]шые тенденции. В частности, к наиболее трудно окисляемым органическим примесям относятся предельные углеводороды, при этом увеличение молекулярной массы этих веществ позволяет проводить процесс окисления при более низких температурах так, скорость окисления бутана на оксидных катализаторах в 10 раз выше, чем скорость окисления метана [11]. Значительно легче окисляются непредельные и ароматические углеводороды, например в присутствии двуокиси марганца пропилен при 300 °С окисляется в 10 раз, а пропан - почти в 10 раз медленнее, чем ацетилен [12]. При окислении кислородсодержащих органических веществ легче других соединений окисляются спирты, затем следуют альдегиды, кетоны, эфиры, кислоты [13-16]. [c.10]

    Прп температуре 880° и времени контакта 0,9 сек. в продуктах реакции содержалось 54% этилена, а также водород, метан, ацетилен, ароматические углеводороды и кокс [51]. Оптимальные условия термического пиролиза этапа, обеспечивающие максимальный выход этилена, определяются правильным сочетанием температуры, времени пребывания продукта в зоне реакции и давлением [4, 40, 52—55]. При очень высоких глубинах превращения исходного этана выходы этилена снижаются. [c.61]

    Все другие продукты пиролиза пропана (бутадиен, ацетилен, ароматические углеводороды и др.) являются, несомненно, продуктами вторичного происхождения. [c.166]

    При температуре 575...650°С этан разлагается с образованием этилена и водорода, при более высокой температуре образуется ацетилен, ароматические углеводороды и сажа. Нитрование этана в газовой фазе дает смесь (3 1) нитроэтана и нитрометана прямое хлорирование при [c.75]


    Свободные радикалы различного строения способны присоединяться к ненасыщенным соединениям олефинам, ацетиленам, ароматическим углеводородам, азо- и карбонилсодержащим соединениям. В химии и технологии полимеров наиболее важными являются взаимодействия радикалов с олефинами, при рассмотрении которых необходимо учитывать направление реакций, структуру радикалов и их реакционную способность, вторичный кинетический изотопный эффект в реакциях присоединения, характеристику переходного состояния и т, д. [c.24]

    Катализаторы. Алкилирование ацетиленом ароматических углеводородов, в частности толуола, можно проводить с пирофосфорной, а такке 85%-ной (и более концентрированной) фосфорной кислотами. [c.31]

    Соотношение скоростей этих реакций зависит от температуры, парциального давления метана, а также от времени пребывания метана и реакционного газа в зоне высокой температуры. Изменением этих условий можно добиться увеличения выхода ацетиленами ароматических углеводородов и подавления реакции глубокого распада метана на элементы. [c.119]

    Для выделения газообразных углеводородов применяют методы сжатие (компрессия) с охлаждением, абсорбционно-десорбционный и адсорбционно-десорбционный (см. ч. I, стр. 271). Жидкости чаще всего разделяют перегонкой и ректификацией. Очень часто в промышленности практикуется комбинирование двух или более перечисленных методов. Используя разнообразные методы разделения исходных материалов, а также наиболее современные процессы их переработки, получают важнейшие соединения, являющиеся непосредственным сырьем органического синтеза синтез-газ (смесь СО и На) насыщенные алифатические углеводороды (от метана до пентанов) индивидуальные моноолефины (от Сз и выше) и их смеси диолефины бутадиен, изопрен и др. ацетилен ароматические углеводороды бензол, толуол, ксилолы и пр. [c.183]

    В пособии приведены также общие схемы получения сьфья для нефтехимической и химической промышленности, в том числе таких важнейших в органическом нефтехимическом синтезе веществ, как алканы, этилен, пропилен, ацетилен, ароматические углеводороды. [c.10]

    В интервале температур от 800 до 1100° С при пиролизе бензола наблюдаются небольшие количества метана и следы ацетилена. Количество образующегося метана, примерно, такого же порядка, как и при нагревании углерода с водородом по-видимому, такая реакция, сопровождающая разложение бензола при высоких температурах, является основным источником образования метана. Интересно, что при нагревании так называемого аморфного углерода с водородом не получаются ароматические углеводороды, а вместо них благодаря реакции на ребрах кристаллов графита образуется метан. Можно считать, в свою очередь, что следы ацетилена, образующегося в процессе пиролиза бензола при высоких температурах, обусловлены скорее вторичным разложением метана, чем прямой диссоциацией бензола до ацетилена. Последняя реакция лишь предполагается некоторыми исследователями [4], однако она трудно доказуема. Ацетилен почти полностью разлагается при 750° С при этом получаются ароматические углеводороды, (в значительных количествах бензол) кокс и газы, среди которых обнаруживаются в убывающем порядке водород, метан и этилен [10]. Поскольку этилен является важным продуктом разложения ацетилена, а не самого бензола, то есть основания предполагать, что разложение бензола до ацетилена не относится к одной из основных реакций этого углеводорода. С другой стороны, [c.96]

    Первичные продукты могут участвовать во вторичных превращениях. Обнаружено [51], что ацетилен является прямым продуктом разложения этилена. В работах [49—511 отмечено, что в образовании ароматических углеводородов принимают непосредственное участие низшие олефины. [c.258]

    Гидрогенизация ненасыщенных углеводородов. 1,4.-Присоедине-ние. Гидрирование ацетиленов. Гидрирование ароматических углеводородов. Восстановление карбонильных соединений. Восстановление карбоновых кислот и их производных. Восстановление ароматических ьигросоединений. Бензидиновая перегруппировка. Восстановление алифатических нитросоединений. Сопряженное окисление — восстановление. Реакция Тищенко. Восстанавливающие агенты натрий, водород, цинк, амальгамы металлов, алкоголяты алюминия, алюминнйгидриды, иодистоводородная кислота. [c.100]

    Получение же ацетилена из метана термодинамически эффективно при высоких температурах. При 1500 К и стандартном давлении равновесная конверсия метана в ацетилен составляет около 70%. Поэтому термодинамически возможен двухстадийный синтез олефиновых и ароматических углеводородов из метана при высоких температурах из метана получают ацетилен, при относительно низких ацетилен переводят в олефиновые или ароматические углеводороды. [c.356]

    Полный порядок связи в ацетилене Р12 равен трем. В общем случае порядок связи может отличаться от целочисленного, как, например, в двухатомных молекулах Нг, N2, в молекулах полиенов и ароматических углеводородов и др. Физический смысл порядка связи понятен из следующего чем больше произведение входя- [c.113]


    Первичные продукты пиролиза в подсводовом пространстве коксовой печи претерпевают дальнейшее термическое разложение, и в результате деалкилирования, дегидрирования гидроароматических циклических систем, конденсации и дегидратации фенолов образуются дополнительные количества кокса, газа и вторичные химические продукты. Последние представляют собой в основном смеси термодинамически наиболее выгодных незамещенных ароматических углеводородов или их метилпроизводных, а также полициклических гетероциклических соединений. Образование бензольных или полициклических ароматических углеводородов из ацетилена и некоторых других простых углеводородов при коксовании мало вероятно, так как в продуктах пиролиза угля ацетилен практически отсутствует. [c.150]

    В бензинах термического крекинга и коксования после селективной гидроочистки содержится до 0,15% (масс.) серы, а октановое число против первоначального снижается на 5—10 пунктов. При гидроочистке бензинов каталитического крекинга также значительно снижается октановое число, поэтому их не следует подвергать гидроочистке. Значительно лучше подвергать ей сырье каталитического крекинга. При очистке бензинов пиролиза проводят их селективное гидрирование, удаляя ацетилен и диолефины и сохраняя моноолефины. Бензин пиролиза, из которого извлечена аро-матика, должен пройти полное гидрирование ди- и моноолефинов, не затрагивая ароматических углеводородов. [c.236]

    Для проверки механизма образования ароматических углеводородов при термическом превращении этилена Шульце и соавтор поставили опыты термической обработки смесей бутадиена с этиленом я ацетиленом (табл. 99 и 100). [c.117]

    Образование ароматических углеводородов происходит в обоих случаях, но больший выход ароматических углеводородов полу чается в случае смеси бутадиена с ацетиленом. [c.117]

    Результаты пиролиза зависят от типа соединения, молекулярного веса и условий процесса. С увеличением молекулярного веса термическая стойкость веществ падает. Наиболее устойчивы к действию высоких температур низкомолекулярные углеводороды — метан, этан, ацетилен и ароматические углеводороды — бензол, толуол. [c.222]

    В течение этого первого периода основным исходным сырьем для нефтехимической промышленности были олефины. Второй период характеризуется тем, что на сцену начинают появляться парафины, диолефины, ацетилен и ароматические углеводороды. Одновременно с этим продолжают увеличиваться масштабы использования олефинов, но последние уже не являются единственным источником сырья. [c.21]

    Ацетилен десорбируют из водного раствора, понижая давление с 19 до 0,05 ата в четыре ступени до 2, до 1, до 0,15 и до 0,05 атл. В первой ступени из раствора выделяется 45%-ный ацетилен, который возвращают в компрессор и оттуда обратно в водяной скруббер. Во второй ступени выделяется 90%-ный ацетилен. Газы, десорбированные в трех последних ступенях, смешивают и подвергают дополнительной очистке, с тем чтобы получить 97%-ный ацетилен. Диацетилен и другие g—С4-углеводороды с высокой степенью ненасыщенности, не удаленные вместе с ароматическими углеводородами при предварительной очистке, отмывают минеральным маслом, а затем серной кислотой. Двуокись углерода поглощается 0,5%-ным водным раствором едкого натра. В результате такой обработки получают 97—98%-ный ацетилен, содержащий до 1% СО2 и 2% инертных газов. Если к ацетилену примешаны значительные количества двуокиси углерода, отмывка последней разбавленным раствором едкого натра представляет, по-видимому, некоторые затруднения [8]. На рис. 29 приведена упрощенная схема такого метода концентрирования ацетилена. [c.281]

    Кроме того, значения коэффициентов распределения и факторов разделения могут зависеть от распределения незаряженного комплекса или ионного ассоциата между двумя фазами. Так как незаряженный комплекс в большинстве случаев имеет гидрофоб- ную поверхность, то закономерности распределения такого комплекса должны в основном совпадать с закономерностями для органических соединений. Распределение органических соединений между водой и растворителем тесно связано с растворимостью этих соединений в воде, так как растворение в этом случае можно рассматривать как распределение вещества между водой и собственной органической жидкой фазой. Хорошо известно, что растворимость в воде углеводородов, являющихся членами одного гомологического ряда, снижается по мере увеличения числа углеродных атомов. Показано [4], что для каждой группы углеводородов (парафинов, циклопарафинов, олефинов, ацетиленов, ароматических углеводородов) имеется линейная зависимость между стандартной свободной энергией растворения и молярным объемом растворенного соединения. Более того, имеющиеся данные [5] позволяют предположить, что основной вклад в изменение положительной стандартной энергии растворения в воде вносит отрицательное изменение энтропии. Низкая растворимость углеводородов в воде и энтропийный характер этого процесса являются результатом структуроформирующего поведения углеводородов. Согласно Франку и Эвансу [6], органические молекулы, растворенные в воде, повышают долю тетракоординированных молекул воды. Образование кластеров тетракоординированных молекул воды вокруг растворенных углеводородов (или подобных им соединений) эквивалентно приближению ориентации молекул воды к льдоподобной структуре. Это сопровождается существенным снижением энтропии, так как молекулы воды, образующие кластер, теряют при этом трансляционную степень свободы. [c.21]

    Процесс полимеризации ацетилена в ароматические углеводороды был усовершенствован Н. Д. Зелинским [35], проводившим его над активированным углем. Реакция протекает с уменьшением объема, поэтому повышенные давления должны способствовать полимеризации. Н. Д. Зелинский заменил давление введением в процесс пористого угля, учитывая, что газы в адсорбированном состоянии имеют в порах адсорбента давление до нескольких атмосфер. Действительно, опыты показали, что при 600" ацетилен в трубке без катализатора полимеризуется неполностью, над березовым же активированным углем выход конденсата с 27,5 г на 100 л пропущенного ацетилена повышается до 116,5 г. [c.603]

    Как ациклические, так и циклические углеводороды могут содержать кратные (двойные или тройные) связи. Такие углеводороды называются ненасыщенными в отличие от насыщенных углеводородов, не содержащих кратных связей. Насыщенные ациклические углеводороды раньше назывались парафинами, ациклические углеводороды с двойной съяъъю — олефинами и с тройной связью — ацетиленами. Ароматические углеводороды хотя и содержат двойные связи, но только формально, поэтому их не относят к ненасыщенным углеводородам, а выделяют в самостоятельную группу углеводородов. [c.14]

    Нефтехимическая промышленность в качестве сырья использует продукты переработки нефти. Задачи этой отрасли — обеспечение многих оргаиических производств углеводородным сырьем (олефинами, ацетиленом, ароматическими углеводородами, синтез-газом), получение многотоннажяых органических веществ и синтетических полимерных материалов. [c.7]

    В связи с этим в данном разделе книги внимашпо читателей предлагаются в виде схем основные современные процессы получения сырья ддя нефтехимической и химической промьшшенности, общая структура перфаботки нефти и газа, основные пути получения, переработки и практического использования таких промьппленно важных углеводородов, как этилен, пропилен, углеводороды С ...С , ацетилен, ароматические углеводороды. [c.127]

    Химия на основе природного нефтяного газа и нефти раньше всего получила развитие в США, где ь настоящее время около 80% алифатических продуктов производится нефтехимическим путем. Сырьем для этой промышленности служат в первую очередь алифатические углеводороды (парафины, циклопарафины, мопоолефины, диолефины и ацетилен). Значительную роль играют также ароматические углеводороды, в прошлом типичный продукт углехимической промышленности, теперь во все возрастающем количестве они получаются из нефти и ее фракций. [c.8]

    Линии I — кислород II — остаточный газ пиролиза III — нефтяная фракция IV — вода V — масло VI — остаточный газ VII — смола VIII — тяжелые ароматические углеводороды IX —легкие ароматические углеводороды X — окись углерода XI — чистый этилен XII — чистый ацетилен. [c.98]

    Значительное место отведено расчету равновесий реакций синтеза важнейших мономеров и полупродуктов, являюш,ихся исходным сырьем для производства различных высокомолекулярных продуктов и пластиков в их числе ацетилен, этилен, пропилен, дивинил, изопрен ароматические углеводороды — бензол, толуол, ксилолы и другие алкилбен-золы — стирол, винилнафталин альдегиды — кетоны, кислоты, спирты, некоторые азотсодержащие соединения и др. [c.5]

    По этому вопросу наиболее важной можно считать работу Вона и Коварда. Они заставляли циркулировать газ в течение 2 часов 30 минут в трубке, нагретой до 570—580°, и получали ацетилен, этан, метан, водород, ароматические углеводороды. Метан образуется в больших количествах. Водород выделяется в начале опыта, в дальнейшем количество водорода уменьшается. Количество угля ностененно к концу опыта уменьшается. [c.245]

    Между 600 и 700° ацетилен довольно быстро полимеризуется в ароматические углеводороды. Реакгсии разложения на углерод и [c.248]

    Гексан дал 18% ацетилена. Удалось даже достичь выхода ацетилена в 33%, однако эти опыты имеют слишком малые шансы на осуществление в промышленных масштабах. Бангерт я Пихяер пропускали ацетилен над силикагелем при 600—700° и получали снача.ча метан, водород и уголь, но затем под ката- литическим воздействием последнего также и жидкие олефиновые и ароматические углеводороды. Фишер, Петерс и Кох достигли превращения ацетилена в смолу на 40—7( % при 250° и над катализатором медь — железо. [c.420]

    Опыты П. Сабатье и его сотрудника Сандэрана возбуждают заслуженное внимание и представляют наиболее интересный пример неорганического синтеза нефти. Смесь непредельного углеводорода, с водородом подвергается (в присутствии катализатора — никеля) нагреванию нри температуре не свыше 180°. Происходит процесс гидрогенизации ненасыщенных углеводородов. В результате получается светло-желтая жидкость удельного веса 0,790, состоящая из предельных углеводородов и напоминающая по своим свойствам пенсильванскую нефть. При несколько измененных условиях опыта получаются и другие результаты так, если пропускать ацетилен без водорода над никелем при температуре 200°С, получается вещество, богатое ароматическими углеводородами. При вторичном пропускании этого последнего над никелем получается смесь нафтенов, т. е. нефть типа бакинской. Здесь, очевидно, мы имеем процесс полимеризации и образования под влиянием катализаторов циклических соединений. Вертело доказал, что полимеризация ацетилена (С2Н2) дает бензол (СаНе) при температуре размягчения стекла. Далее в литературе встречаются указания, что углеводороды могут получаться и при других реакциях. Например, еще в 1863 г. была известна возможность непосредственного получения ацетилена при пропускании водорода между угольными концами вольтовой дуги, но тогда на это не обратили должного внимания. Еще Вертело указал, что щелочные металлы, реагируя с СО2, образуют карбиды, или ацетиды и кислород, который потом уходит из сферы реа- [c.302]

    Распад на элементы — не единственная реакция пиролиза метана. Сокращением длительности нагревания и регулированием скорости oxJ[aждeния продуктов реакции из метана можно получить также газообразные и жидкие углеводороды. При 850— 1200 С, пропуская метан с большой скоростью через нагретые фарфоровые и кварцевые трубки, получают конденсат, содеря<а-щий непредельные углеводороды, бензол, толуол, нафталин и тяжелую смолу, содержащую высшие ароматические углеводороды. В газообразных продуктах обнаруживают этилен, ацетилен и бутадиен. Некоторые катализаторы (SiOj, W, Mo, Sn) ускоряют эпу реакцию, другие (железо, графит) — замедляют. Максимальный выход олефинов наблюдается при температурах до 1000 °С, ароматических углеводородов — при 1000—1200 С, а ацетилена — при 1500 С. Образование всех этих продуктов объясняют возникновением нри высоких температурах кратковременно су1цествующих свободных радикалов, например метиленового радикала Hg  [c.411]

    Ярко выраженная способность ацетилена и его гомологов к полимеризации в ароматические углеводороды была известна очень давно (М. Вертело, 1867 г.). Исследования Н. Д. Зелинского и Б. А. Казанского в этой области были описаны выше (стр. 603). В последнее время установлено, что ацетилен в особых условия.х может давать не только циклический тример (бензол), но также циклические тетра- и пентамеры. Так, в присутствии цианистого никеля под давлением 15—,20 ат азота прн температуре 60—70 ацетилен образует с высоким выходом циклооктатетраен (тетрамер), окрашенный в желтый цвет [83]  [c.754]


Смотреть страницы где упоминается термин Ацетилен из ароматических углеводородов: [c.127]    [c.500]    [c.189]    [c.9]    [c.14]    [c.79]    [c.581]    [c.80]    [c.4]    [c.112]    [c.21]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.167 ]




ПОИСК







© 2025 chem21.info Реклама на сайте