Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сульфиды, комплексы

    Реакционная способность сульфидов. Комплексы меди в растворе ацетона обладают групповой специфичностью, т.е. в их присутствии возможно окисление сульфидов самого различного строения [67]. Скорость образования [c.220]

    При сплавлении с щелочами, цианидами и сульфидами щелочных металлов в присутствии окислителей (даже О2) палладий и платина переходят в соответствующие производные анионных комплексов. [c.608]


    К первому относятся металлокомплексные соединения переходных металлов (Ре, Со, N1, Си, Мп, Мо) и в качестве лигандов к ним — соединения хелатного типа (шиффовы основания, дитиофосфаты, дитиокарбаматы, р-дикетоны), имеющие в своем составе атомы Ы, 8, О, Р. Выбор лигандов обусловливается термоокислительной стабильностью (при 150—280°С) соединений, полученных на их основе. Для повышения их растворимости в нефтяных фракциях [0,1-"8% (масс.)] применяют комплексы, содержащие олеофильные заместители (алкильные, алк-оксильные или ароматические). К второму типу относятся Ыа-, К-, Ы-, Mg-, Са-, Зг- и Ва-соли карбоновых, дитиофосфорных и дитиокарбоновых кислот. Третий тип металлсодержащих ингибиторов окисления включает сульфиды, оксиды, гидроксиды и соли, диспергированные в нефтепродуктах при 150—250 °С с помощью ультразвука и другими методами. К четвертому типу противоокислителей относятся почти все перечисленные металлсодержащие производных алкилароматических аминов, замещенных фенолов и хинонов. Такие композиции присадок эффективны и в синтетических маслах на основе сложных эфиров при температуре до 250—260°С. В ряде случаев использование этих композиций позволяет получить присадки полифункцио-нального действия. [c.94]

    Крафтса, например хлорид цинка [82], трехфтористый бор [83 и безводный треххлористый алюминий. Последний селективно поли-меризует реакционноспособные олефины и одновременно переводит сернистые соединения в легко удаляемые комплексы химизм превращений, которым при этом подвергаются сернистые соединения, очень сложен, так как одновременно протекает целая серия первичных и вторичных реакций. Подвергалась изучению глубина сероочистки хлористым алюминием для различных типов сернистых соединений [84]. В общем случае 1 г хлористого алюминия на 100 мл сильно разбавленного раствора сернистых соединений в лигроине (нафте) удаляет от одной трети до половины сернистых соединений. Для некоторых сульфидов очистка идет еще глубже. Катализат подвергается затем вторичной перегонке, при которой содержание сернистых соединений еще больше снижается, так как большая часть исходных сернистых соединений превратилась в высококипящие комплексы. Хлористый алюминий применяется в промышленном масштабе для глубокой очистки специальных сортов смазочных масел. [c.239]

    Сернистые соединения, содержащиеся в легких нефтяных дистиллятах, в какой-то степени, но-видимому, являются продуктами разложения более тяжелых и более сложных серусодержащих комплексов, которое произошло нрп перегонке или крекинге. В нефтяных дистиллятах были обнаружены следы элементарной серы, сероводород, меркаптаны, сульфиды, дисульфиды и тиофены, а также продукты, по своей природе относящиеся к сульфатам, сульфокислотам, серной кислоте и сероуглероду [161]. Удаление из нефтепродукта сернистых соединений ст( ь различных классов связано с целым рядом проблем. [c.248]


    Эти реакции катализируются металлами, окислами-полупроводниками, сульфидами и т. п. или в растворе неорганическими комплексами. [c.25]

    Кроме того, при окислении сульфида натрия в щелочной среде образуются тиосульфат и сульфат натрия [89], на что требуется в 6-8 раз больше кислорода, чем на окисление меркаптида. Это приводит к преждевременной отработке активной щелочи в составе катализаторного комплекса. Поэтому возникла необходимость в полной очистке углеводородного сырья от сероводорода слабым (3 %-ным) раствором щелочи [c.59]

    Е. Н. Гурьянова и др. [85] изучили особенности комплексо-образования сульфидов, экстрагированных из дистиллята 150— 325° 86%-ной серной кислотой, с иодом и галогенидами А1, Ga, Sn, Ti. Все сульфиды экстракта дали комплексы состава 1 1с [c.11]

    Комплексы благородных металлов с нефтяными СС и их производными могут применяться и в других областях, например нри нанесении высококачественных металлических пленочных покрытий. Пример такого применения дан в работе [590], авторы которой проводили золочение изделий с помощью комплексных соединений хлораурата аммония с нолисульфидами, образующимися при взаимодействии нефтяных сульфидов с элементарной серой (5 1) при 200°С растворы получающегося смолоподобного вещества, содержащего металлокомплексы, наносились на поверхность изделия и обжигались при 600—800°С. [c.81]

    СН2) — 5К сделан по следующим соображениям. Известно, что ЗпСЦ и Т1С14 дают с сульфидами комплексы двух типов пятикоординационные состава [c.134]

    Для химии сульфидов нефти особое значение имели комплексы сульфидов с солями ртути, а именно, с сулемой и с ацетатом двухвалентной ртути. Эти соли широко применяются для выделения сульфидов из нефтяных дистиллатов (или концентратов), главным образом из бензиновых фракций, в виде комплексных соединений. Для идентификации сульфидов комплексы с сулемой могут иметь лишь ограниченное применение, так как состав их связан с условиями образования и очистки. Так, например, состав и температура плавления таких комплексов а-замещенных тиофанов изменяется в зависимости от растворителя, употребляемого для их перекристаллизации [107]. Кроме того, в случаях ослабленной С — S-связи, действие сулемы может вызвать разрыв связи, например, у трифенил-метиларилсульфидов [108]. [c.115]

    Соединения бора (III). Степень окисления +3 у бора проявляется в соединениях с более электроотрицательными, чем он сам, элементами, т. е. Е галидах, оксиде, сульфиде, нитриде, гидридах и в соответствующих. шионных борат-комплексах, простейшие из которых приведены ниже [c.437]

    Тем не менее имеется ряд патентов на методы сульфидирования катализаторов гидрообессер гваиия, отличающиеся условиями обработки и сульфидирующим агентом. Большая роль отводится сероуглероду [пат. США 3516926], предлагаются меркаптаны (С1—С20) [пат. США 4111796], диметилсульфид [пат.Англин 1553616], растворенные в нефтепродукте, сероводород и низкомолекулярные сульфиды в смеси с водородом [ пат. Японии 53-122692, США 3166491], сероводород, растворенный в нефтепродукте [пат. США 4213850] и пр. Разновидностью сульфидирования сероводородом в смеси с водородом является прием загрузки элементарной серы непосредственно в реактор, на слой катализатора и обработки ее ВСГ при постепенно повышаемой температуре до 200 °С [ 80, пат. США 4177136]. В связи с многообразием методов сульфидирования сформулировать требования по выбору условий обработки однозначно весьма трудно. Особенно разноречивые мнения по влиянию предварительного восстановления катализатора водородом на последующее сульфидирование. Однако в последних публикациях утверждается, что глубокое восстановление водородом, например, при высоких температурах (400 °С и выше) отрицательно влияет на образование комплексов, определяющих активность катализатора [39, 72, 81], но необходимость водорода при активации обязательна [80]. На основе исследований с учетом возможности реализации технологии активации катализатора ряд известных вариантов сульфидирования катализатора можно, в порядке предпочтительности, расположить следующим образом а) смесью сероводорода с водородом б) низкомолекулярным серусодержащим соединением в среде водорода в) низкомолекулярным серусодсржащим соединением в потоке легкого [c.99]

    Имеются данные о способности сульфидов присоединять кислоты и соли металлов, с образованием сульфониевых солей [113], строение которых аналогично строению солей аммония. Например, при действии сероводорода получается комплексное соединение типа [(С Н2 -).1)зЗ]28, в котором содер катся три атома серы двух родов один из них имеет ионогенный характер, другие два входят в состав комплекса и не могут быть обнаружены качественными реакциями на сульфиды до тех пор, пока не разрушена вся молекула. [c.29]

    Модель противоизносного действия сернистых соединений, в частности дисульфидов, предполагает адсорбцию присадки на поверхности металла и последующую диссоциацию молекул по связям 5—5 с образованием достаточно прочных соединений с металлом. Эффективность противозадирного действия характеризуется образованием сульфидов и дисульфидов металлов. Органические сульфиды имеют худшие противозадирные свойства по сравнению с соответствующими дисульфидами. Сульфиды, как и другие соединения с прочно связанными атомами серы, образуют с металлами комплексы донор но-акцепторного типа за счет участия неподеленной Зр -пары электронов атома серы. Образование таких комплексов облегчает воздействие кислорода (ПО месту присоединения углеводородных радикалов к сере. Для сульфидов предполагается также постадий-ное взаимодействие серы с железом с образованием сульфидов железа. [c.263]


    Эффективный способ устранения подвулканизации смесей — экранирование поверхности частиц соединения металла защитной пленкой. Например, описан способ повышения стабильности резиновых смесей за счет использования окиси цинка, покрытой сульфидом цинка, и окиси цинка, покрытой фосфатом цинка [8]. Применение органических кислот и их ангидридов в качестве замедлителей реакции солеобразования с окисью цинка снижает подвулканизацию смесей карбоксилсодержащих каучуков и одновременно существенно улучшает свойства вулканизатов [8]. Применение в качестве вулканизующих агентов алкоголятов алюминия, магния, а также различных перекисей двухвалентных металлов (Zn02, ВаОг и др.) позволяет существенно повысить стойкость резиновых смесей к подвулканизации [7]. Особенностью карбоксилсодержащих каучуков является повышенная стойкость в процессе теплового старения, очень высокое сопротивление разрастанию трещин (больше 300 тыс. циклов) [1]. По комплексу свойств карбоксилсодержащие каучуки представляют существенный интв--рес для различных областей применения.  [c.403]

    Из-за попадания сероводорода в раствор катализаторного комплекса происходит ухудшение процессов регенерации щелочи и демеркаптанизации прямогонных фракций в присутствии ДЭГ. В связи с этим исследовано влияние сульфида натрия (образующегося из сероводорода в щелочной среде) на окисление н-бутилмеркаптида натрия кислородом в присутствии ДСФК и ДЭГ. [c.59]

    Как видно, уже в присутствии 0,016 моль/л сульфида натрия скорость окисления меркаптида уменьшается вдвое и при дальнейшем увеличении концентрации не изменяется. Следовательно, попадание сероводорода в щелочной раствор катализаторного комплекса приводит к ингибированию каталитического окисления мефкаптидов и этот факт следует учитывать при разработке. Ингибирование, по-видимому, связано с образованием координацонно-насыщенных комплексов между катализатором, органическим растворителем и сульфидом натрия (или продуктами его окисления) [86]. [c.59]

    Многочисленные экспериментальные данные, изложенные в предыдущих разделах, приводят к несомненному доказательству ионного механизма изомеризации и расщепления на сульфидных каталйза-торах. Поэтому причиной отмеченного выше явления понижения изомеризующей и расщепляющей активностей сульфидов вольфрама и молибдена при нанесении их на носители, не обладающие кислотными свойствами (далее для краткости называемое эффектом разведения ), должно быть то, что на поверхности таких катализаторов адсорбированное гидрируемое вещество гораздо труднее приобретает положительный заряд. Очевидно, что большую, и меньшую легкость образования заряженного комплекса при адсорбции гидрируемого вещества следует рассматривать только в связи с электронными свойствами катализатора. [c.266]

    Используя для выделения сульфидов комплексообразование с галогенидами металлов, авторы работы [476] пришли к заключению, что до 90% тиамоноцикланов из фракции 150—325°С составляют р-алкилзамещенные изомеры, легче образующие такие комплексы. Аналогичные выводы по сходным мотивам сделаны и при изучении СС из фракции 140—240°С западносибирской нефти, дающих комплексы с ТЮ [471]. Эти мнения, вероятно, оши- [c.59]

    С сульфидами щелочных металлов HgS образует желтые растворимые комплексы M2[HgS2]- [c.598]


Смотреть страницы где упоминается термин Сульфиды, комплексы: [c.178]    [c.77]    [c.530]    [c.45]    [c.77]    [c.121]    [c.259]    [c.383]    [c.616]    [c.160]    [c.602]    [c.143]    [c.11]    [c.12]    [c.12]    [c.12]    [c.13]    [c.60]   
Полумикрометод качественного анализа (1947) -- [ c.27 ]




ПОИСК







© 2025 chem21.info Реклама на сайте