Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водородные подвижность

    Основываясь на современных исследованиях Н-связи, можно сделать предположение, что процесс поляризации существенно зависит от перемещения и положения протона Н-мостика в электрическом поле. Так, в работах [206, 660] при рассмотрении влияния среды на структурную форму комплекса с водородной связью (КВС) отмечается зависимость этой формы от диэлектрической проницаемости среды. При исследовании водородной связи О—Н---М обнаружено, что с повыщением диэлектрической проницаемости раствора происходит переход КВС из молекулярной формы в ионную с последующей диссоциацией комплекса при более высоких значениях е раствора [660, 661]. Существенно, что перенос протона вдоль Н-связи в КВС, как установлено в работе [662], вызывается реорганизацией среды. Хотя влияние среды на связь О—Н---0 мало изучено, высокая подвижность протонов в структуре льда все же д ет основание предполагать, что в образуемых при определенных величинах сорбции КВС возможна миграция протона Н-связи. [c.246]


    Межфазный катализ включает образование ионных пар, в которых анион и катион довольно тесно связаны. Возможно, поэтому ассиметричное влияние хирального катиона катализатора на реакции анионов приводит к частичному разделению рацематов, т. е. к оптической индукции. Необходимым условием такого эффекта является достаточно тесное взаимодействие аниона и катиона и только в одном из нескольких возможных положений и конформаций. Высокая подвижность аниона по отношению к катиону препятствует этому эффекту. Использование с этой целью четвертичных аммониевых солей с хиральным центром в углеродном скелете, по-видимому, малоперспективно, если только анион-катионное взаимодействие не усиливается дополнительной полярной группой (например, группой ОН, способной образовывать водородную связь). Лучшими катализаторами могут быть соединения с хиральным аммонийным азотом, который с трех сторон стерически экранирован [1173, 1601]. [c.102]

    Енолизация кетонов. Когда в молекуле реактива Гриньяра у р-углеродного атома нет ни одного атома водорода, способного к гидридному переходу, а сам радикал достаточно велик, магнийорганическое соединение действует как основание, отщепляя (как при реакциях конденсации) от карбонильного соединения подвижный а-водородный атом. При этом в качестве основного продукта образуется енолят (43), который может реагировать со второй молекулой кетона по типу альдольной конденсации, образуя после гидролиза продукта реакции -гидр-оксикарбонильное соединение  [c.287]

    Муса и от 9 до 11 ккал/моль для остальных грунтов) значительно превосходят значения энергии активации вязкости воды (от 3 до 6 ккал/моль) и подвижности водородных ионов (от 1 до 3 ккал/г-ион), что указывает на существенное различие процессов диффузии в жидкой фазе грунтов и почв и в растворах электролитов. gs Возможны и отступления от экспоненциальной зависимости скорости грунтовой и почвенной коррозии металлов от температуры, связанные с более быстрым высыханием или с меньшей аэрацией грунта или почвы при повышении температуры. [c.389]

    К корпусным относятся базовые детали — корпуса аппаратов и станины машин. Для корпусных деталей характерны следующие повреждения 1) механические повреждения в виде трещин, обломов, отгибов, а также наличие оставшихся в резьбовом отверстии частей оборванной шпильки 2) износ посадочных поверхностей под подшипники и втулки, износ резьб, износ рабочих поверхностей с подвижными посадками 3) коробление при-валочных поверхностей, нарушение взаимного положения осей отверстий 4) коррозионный износ в виде местного уменьшения толщины стенки 5) отслоение и вздутие плакирующего слоя 6) водородная коррозия, которая не обнаруживается при визуальном осмо тре и может быть выявлена при вырезке образца и исследовании структуры металла [c.148]


    Как уже отмечалось, в продуктах коррозии в воде и водных растворах карбоновых кислот обнаружены гидроксиды металлов. Их образование может происходить в результате развития электрохимических процессов коррозии [302]. Образование гидроксидов металлов характерно для всех водных конденсатов в нефтепродуктах вследствие развития процессов кислородной деполяризации и высокой подвижности ионов гидроксила. Этот показатель для ионов Н0 равен 174 см /(с-В) и значительно выше, чем, например, для таких высокоактивных анионов, как ЗОз - и 564 соответственно 61,6 и 67,9 см / с-В)]. Наличие гидроксидов металлов в продуктах коррозии приводит к образованию их ассоциатов с карбонатами за счет образования водородной связи между протонирован-ным атомом водорода гидроксила и кислородом карбоксильной группы. [c.289]

    Как уже отмечалось, подвижность ионов оксония и гидроксила аномально высока по сравнению с примесными ионами. Перенос этих ионов обусловлен транспортом протона по цепочкам молекул воды, связанных водородными связями. Для объяснения этого процесса предложены коллективный механизм Грот-куса и основанный на рассмотрении перехода частицы через барьер механизм Эйринга. В работе [356] рассмотрен механизм переноса протона в водных системах, связанный с коллективным возбуждением солитонного типа. Этот механизм в значительной степени зависит от стабильности проводящей протон цепочки молекул воды. Выполненный анализ [349, 350] показывает, что в приповерхностной области более прочные водородные связи образуются вдоль направлений, параллельных границе. Поэтому можно ожидать, что вклад транспорта протонов в поверхностную проводимость водных систем будет существенным. [c.132]

    На рис. 15.1 показаны различные виды изотерм (кривые 1—4). Одной из наиболее типичных является 5-образная (рис. 15.1, кривая 2) диэлектрическая изотерма, полученная для ряда органических и неорганических сорбентов. Эта изотерма состоит из трех участков А, В, С. Согласно слоистой модели, молекулы первого слоя (участок А) обладают сравнительно малой ориентационной способностью в электрическом поле вследствие их сорбции на наиболее активных центрах. Такими центрами являются функциональные группы, способные образовывать водородные связи, дефекты структуры кристалла, координационно ненасыщенные атомы [647]. Молекулы второго слоя более подвижны и дают больший вклад в ориентационную поляризацию сорбата, что выражается в более высоких значениях й /йа (участок В). Однако при достаточно больших величинах сорбции с развитием сетки водородных связей происходит цементация сорбата, его структура становится более жесткой. [c.243]

    Олефины проявляют и слабые кислотные свойства, что обычно связывают с подвижностью водородного атома у атома С, находящегося в р-положении к двойной связи. Однако водородные атомы у С при двойной связи также способны к отщеплению. Крам [10], обобщая данные ряда авторов, приводит следующие величины рКк для разных углеводородов  [c.92]

    В большинстве случаев коррозии металлов с водородной деполяризацией при высокой концентрации ионов Н" Н20 в растворе концентрационная поляризация вследствие замедленности переноса водородных ионов к катодным участкам незначительна. Зто обусловлено большой подвижностью водородных ионов, наличием дополнительного перемешивания раствора у катода выделяющимся газообразным водородом и дополнительным переносом водородных ионов к катоду миграцией. [c.251]

    Процесс углекислотной коррозии протекает с водородной деполяризацией, причем этот процесс осуществляется ионами гидроксония из объема раствора и ионами водорода, выделяющимися из угольной кислоты. При низких давлениях СО2 ввиду малой концентрации растворенной углекислоты и большой подвижности ионов гидроксония деполяризация углекислотной коррозии, вероятно, осуществляется ионами гидроксония из водного раствора. При высоких давлениях СО2 концентрация углекислоты в воде значительно возрастает и в коррозионном процессе преобладает деполяризация ионами водорода из адсорбированной кислоты. [c.32]

    Энергия (теплота) активации вязкости воды и подвижности водородных ионов (но Глесстону, Лейдлеру и Эйрингу) [c.354]

    Обнаружение подвижных атомов Н, способных к образованию водородных связей, облегчается благодаря смещению их резонансных полос в более высокочастотное ноле с разбавлением (снижением степени ассоциации). Многие гетероатомные функции, содержащие неподеленные электронные пары и способные к комп-лексообразованию с металлами, могут быть выявлены по смещению- полос поглощения в более слабое или более сильное поле присутствии парамагнитных сдвигающих реактивов комплексных солей европия или празеодима соответственно. Такой метод использован, например, при анализе ароматических карбоновых кислот [240]. [c.31]


    В неполярной среде ион отличается значительным дальнодействием по сравнению с полярными жидкостями в отличие от водных растворов, где ион полностью нейтрализуется полярными молекулами, в неполярной среде происходит лишь частичная компенсация его заряда вследствие малого содержания дипольных молекул и, по-вндимому, из-за сложного строения дифильных молекул. Носители тока в неполярных средах могут иметь переменную величину подвижность таких ассоциатов меньше, чем у исходного иона. Возможно, при электрической проводимости большую роль играют именно такие системы с центральным ионом. Электростатическое диполь-дипольное взаимодействие молекул невелико и, по-видимому, не имеет большого значения при образовании молекулярных димеров, где главное место отводится водородным связям. [c.27]

    Подвижность водородных атомов допускает и Я. М. Слободин. В одной из своих работ по изомеризации ацетиленовых углеводородов [24] он считает (бездоказательно), что на катализаторе происходит отщепление водородных атомов, находящихся в р-положе-НИИ к ацетиленовой связи, в результате чего образуются свободные радикалы, которые изомеризуются и обратно присоединяют водород  [c.566]

    Повышение реакционной способности водорода при наличии нитрогруппы у того же углеродного атома может быть отнесено за счет того, что нитрогруппа, являясь электроноакцепторным заместителем, ослабляет связь между углеродным и водородным атомами. Это влияние нитрогруппы отражается и на отношении нитросоединений к галоидам. В первичных и вторичных нитросоедипениях подвижные атомы водорода легко замещаются бромом, причем образуются продукты, отвечающие формула.м  [c.176]

    Наконец, первичные и вторичные нитросоединения, благодаря наличию подвижных водородных атомов, находящихся под влияние.м нитрогруппы, способны присоединяться к альдегидам. Так, нитрометан соединяется с тремя молекулами формальдегида реакция протекает по уравнению  [c.177]

    В зависимости от строения основной цепи и боковых групп, замещающих водородные атомы, полимеры имеют различную полярность и разную величину сил внутримолекулярного и межмолекулярного сцепления и, следовательно, неодинаковую подвижность макромолекул. От полярности и гибкости макромолекул зависят упругие, эластические и пластические свойства полимера, твердость и жесткость материала, температура перехода от упругого к эластическому и пластическому состоянию. [c.20]

    Современная теория аномально высокой подвижности водородных и гидроксильных ионов, разработанная рядом авторов, особенно Берналом и Фаулером, п )едставляет собой развитие и модификацию представлений о механизме электропроводности электролитов, высказанных русским ученым Гротгусом в начале XIX в. Суть этой теории состоит в том, что в водных растворах и в ряде других растворов протои, как по цеиочке, передается в направлении, совпадающем с направлением электрического поля от нона гидроксония к молекуле воды, превращающейся прн этом в ион шдро-ксония, а от нее к соседней молекуле и т. д. (цепочечный или эстафетный механизм электропроводности)  [c.130]

    Если обозначить органическое вещество, содержащее функциональную группу с подвижным водородным атомом, как RH, то реакцию оксиэтилирования можно цр здставить как [c.149]

    Растворители представляют собой однородные структурированные субстанции. При контакте между молекулами растворителя и растворенного вещества имеют место ион-дипольные взаимодействия. Степень сольватации указывает на количество таких взаимодействий. Взаимодействие тем больше, чем ближе контакт между растворимым веществом и растворителем. Дипольные, дисперсионные и индукционные взаимодействия, а также водородные связи действуют совместно с кулоновскими силами, и все вместе определяют стабильность и свойства ионных пар. Поэтому большое значение имеет природа" как растворенного вещества, так и растворителя. Сольватная оболочка уменьшает подвижность и коэффициенты диффузии как ионов, так и ионных пар. Способность апротонного растворителя к сольватированию не зависит от диэлектрической проницаемости, но в значительной степени определяется его элект-ронодонорными или электроноакцепторными свойствами. Рол  [c.17]

    В результате проведенного выше анализа данных по плотности прочно связанной воды можно сделать вывод, что высокая энергия взаимодействия ее молекул с активными центрами гидрофильной поверхности и, как следствие, друг с другом еще не предопределяет повышенной по сравнению с объемной плотности связанной воды. Поверхность навязывает адсорбционным слоям структуру, зависящую от топографии и природы активных центров, т. е. в определенном смысле оказывает разу-порядочивающее действие на связываемую воду. Конечно, подвижность адсорбированных на гидрофильных поверхностях молекул воды, как это следует из анализа изменений энтропии при адсорбции [85] и данных ЯМР (см., например, [86]), намного ниже, чем в жидкой воде. Но приспособление адсорбционного водного слоя к топографии активных центров приводит к нарушению в нем целостности сетки межмолекулярных водородных связей в ИК-спектрах сорбированной воды полосы валентных колебаний слабо нагруженных ОН-групп воды существенно выше, чем в жидкой воде [66]. [c.35]

    Состояние связанной воды (энергия связи, подвижность) определяет специфику процессов структурообразования и массообмена в дисперсных материалах. Исследование диэлектрических свойств торфа низкой влажности свидетельствует, что связь молекул воды с сорбентом не является жесткой [215]. К тому же выводу можно прийти, анализируя данные калориметрического определения теплот смачивания торфа водой. При поступлении первых порций воды в материал выделяемая теплота составляет около 67 кДж/моль. Время жизни молекулы воды на активном центре, в соответствии с формулой т = = тоехр (—Е1ЯТ) (где Е — энергия связи молекул сорбата с сорбентом), в этом случае примерно равно 10 с, а при наличии лишь одной водородной связи тжЗ-10 2 с, т. е. молекулы сорбированной воды могут с частотой 10 —10 с отрываться [c.67]

    Для силикатных пород нет точной информации о снижении о под действием воды. Обзор сведений по кварцу содержится в книге [257] и в работе [258], из которых видно, насколько велик разброс литературных данных. Однако можно считать, что свободная энергия негидратированной силоксановой поверхности кварца, обнажающейся при образовании ступеньки, вряд ли успевает сильно снизиться при физической адсорбции воды или при смачивании, а термоактивируемая химическая модификация поверхности с образованием силанольных связей требует большего времени. В то же время известно, что движение дислокаций в кварце может значительно облегчаться под действием воды. По схеме, разработанной Григгсом [259], в результате диффузии воды вдоль дислокаций образуются силанольные мостики =51—ОН. .. НО—51 =, которые легко рвутся в самом слабом месте (по водородной связи). Сопротивление движению дислокаций уменьшается, и поэтому диффузия ОН-групп (или, возможно, ионов Н+ или НзО+) контролирует подвижность дислокаций и, следовательно, скорость деформации. По сути, здесь мы имеем дело с явлением, близким к адсорбционному пластифицированию, только облегчение разрыва межатомных связей происходит в другом координационном окружении — не на поверхности, а в объеме. По-видимому, такой механизм возможен и в случае многих других силикатных минералов (оливин [260] и др.). [c.89]

    Подвижность а-водородного атома из-за влияния нитрогруппы обусловливает взаимодействие нитроалканов с азотистой кислотой с образованием нитроловых кислот  [c.149]

    Для низших олефинов продукты внедрения можно выделить, например при взаимодействии этилена и [(С2Н5)зР]гРШС1 при 8МПа (80 кгс/см ) и 95 °С выделен продукт присоединения с выходом 5 25% [36]. Для высших олефинов продукты внедрения нестабильны и могут быть промежуточными продуктами при изомеризации, ДИ-, олиго- и полимеризации. Однако имеются указания [37], что если в олефине нет подвижного водородного атома [c.103]

    Выше указывалось, что нет никаких причин считать воду соверн1енно исключительным веществом среди других химических соединений. Однако один из ионов, входящий в состав воды,— ион водорода — может быть выделен среди всех остальных это единственный ион, не имеющий электронных оболочек. Протон примерно в 10 ООО раз меньше остальных ионов. Он обладает целым рядом совершенно особых свойств — исключительной подвижностью, способностью глубоко внедряться в электронные оболочки других ионов и молекул, осуществлять химическую связь (водородная связь) и т. д. [c.242]

    Известно, что каждая частица вещества в отсутствие внешних силовых полей находится под воздействием двух конкурирующих энергетических факторов теплового движения и межмолекулярного взаимодействия. При нагревании вещества тепловое движение молекул и их ассоциатов становится интенсивнее, в результате чего возрастают среднестатистические расстояния между частицами. Так как все виды межмолекулярного взаимодействия (диполь-дипольное, индукционное, дисперсионное, водородная связь и т.п.) ослабевают обратно пропорционально шестой степени расстояния между взаимодействующими частицами, то очевидно, что при нафсвании полимера происходит существенное уменьшение межмолекулярного взаимодействия и повышение подвижности макромолекул. [c.123]

    Концентрационная поляризация, в частности, очень невелика вследствие большой диффузионной подвижности и скорости миграции водородных ионов, перемешиваш1я раствора у катода выделяющимся газообразным водородом и др. Работами [c.41]

    При реакции между двумя неодинаковыми карбонильными соединениями каждое из них может играть роль как метиленовой, так и карбонильной компоненты, вследствие чего возможно обра-зова1ше смеси продуктов. Предпочтительное направление реакцни определяется подвижностью водородных атомов в а-метиленовой группе и способностью карбонильной группы к присоединению. [c.573]

    Скорость процесса контролируется взаимодействием метана с адсорбированным на катализаторе кислородом и тормозится десорбирующимся водородом. Стадия (I) не является лимитирующей. Окисление активных центров происходит быстро с образованием промежуточного соединения, обладающего слабыми основныш свойствами. Меаду подвижным водородным атомом метана и промежуточным соединением устанавливается водородная связь. Вследствие большого сродства водорода к никелю протон, принимающий участие в водородной связи,смещается к атому никеля. В результате разрядки протона на поверхности кристаллического никеля образовавшийся комплекс атомов разлагается на окись углерода, водород и окись никеля. Распад промежуточного соединения не является стадией, контролирующей скорость процесса, о чем свидетельствует большой экзотермический эффект его образования /27/. [c.49]

    При внесении в шихту для коксования оптимальных по качеству добавок органических веществ, обычно пеков или масел (при соответствующем их расходе), можно повысить спекаемость углей и шихт. Механизм действия органических добавок может быть в общем представлен в следующем виде. При нагреве углема-слявой смеси до температур, при которых еше не начинается термическое разложение угля, добавки распределяются по поверхности угольных зерен и частично адсорбируются ими. В период пластического состояния молекулы добавки проникают в межмолекулярное пространство изменяющегося вещества угля и способствуют повышению макромолекулярной подвижности по механизму внешней пластификации. Молекулы жидкой добавки раздвигают молекулы образовавшихся продуктов расщепления угля и затрудняют их взаимодействие в процессе поликон-денсации. Одновременно добавки участвуют в реакциях водородного перераспределения, в результате которого перенос водорода добавок к реагирующим молекулам (радикалам) угля приводит к стабилизации и, как следствие, увеличению количества веществ со средней молекулярной массой, образующих жищсую. фазу пластической массы. Кроме того, наличие вещества добавки повышает концентрацию в пластической массе жидкоподвижных продуктов. В результате возрастает количество, текучесть и термостабильность пластической массы, улучшаются условия формирования пластического контакта остаточного вещества угольных зерен и зарождения новой промежуточной фазы (мезофазы), с которой связывают развитие упорядоченной углеродистой (оптически анизотропной) структуры полукокса-кокса. [c.215]

    Ответ Полимерный субстрат хлопчатобумажной ткани - целлюлоза - относится к полужесткоцепнь[м полимерам Подвижность макромолекул этого полимера ограничена также интенсивными межмолекулярными водородными связями. Поэтому разгладить смятую хлопчатобумажную ткань можно двумя способами или поместив ее между двумя плоскими плитами и приложив к ним сжимающее усилие, или после увлажнения разгладить ткань горячим утюгом, т е. приложив небольшое усилие, но при повышенной температуре. Пары воды пластифицируют полимер, ослабляя межмолекулярные контакты, способствуя тем самым увеличению подвижности макромолекул это приводит к снижению времени релаксации. Глажение сухой хлопчатобумажной ткани на холоду требует очень длительного времени, так как Тр при этом велико. Для сокращения времени глажения ткань увлажняют и нагревают, что обусловливает снижение ip. [c.131]

    Обладающая сильным электроноакцепторным эффектом (-1-эфф.) нитрогруппа активирует подвижность а-водородных атомов при углероде у нитрогруппы, которые легко отщепляются и быстро присоединяются к кислороду нитрогруппы с одновремеиной миграцией двойной связи. То естъ имеет место таутомерное равновесие нитроалкана с его кислотной формой - нитроновой кислотой  [c.148]

    Внутримолекулярный синергизм проявляется и у соединений 01 и 02. Они хемосорбируются на поверхности металла в результате взаимодейтсвия с ней подвижных электронов л-связей бензольного кольца и неподеленной пары электронов атомов азота и кислорода. Высокие защитные свойства указанных соединений обеспечиваются вследствие совместного проявления блокировочного и энергетического эффектов торможения электродных процессов. Уменьшение скорости катодного выделения водорода сопровождается изменением природы водородного перенапряжения - наблюдается преимущественное торможение стадии разряда за счет возникновения потенциала положительного знака в результате адсорбции атомов азота. [c.187]

    При этом связь группы N с метиленовой (метинной) группой становится более прочной и уменьшается дефицит электронной плотности на входящем в нее атоме углерода. Это затрудняет нуклеофильное замещение группы GN в соединениях такого типа. У а-алкилнитрилов, где подвижность а-водородного атома снижена электронодонорной алкильной группой, наряду с реакцией присоединения возможна и реакция замещения группы N  [c.298]


Смотреть страницы где упоминается термин Водородные подвижность: [c.396]    [c.578]    [c.354]    [c.185]    [c.77]    [c.200]    [c.173]    [c.157]    [c.101]    [c.156]    [c.341]    [c.380]    [c.221]   
Физическая химия Издание 2 1979 (1979) -- [ c.257 ]




ПОИСК







© 2025 chem21.info Реклама на сайте