Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Микрошприцы для ввода проб

    Навеску (5 г) берут в склянку с самоуплотняющейся пробкой, через которую медицинским шприцем добавляют пропионовую кислоту. После выхода прибора на режим микрошприцем вводят пробу. Порядок выхода компонентов показан на рис. 23. [c.82]

    Эти механизмы позволяют исключить ошибки, связанные с дозированием вручную, повысить воспроизводимость результатов и обеспечить непрерывную работу аналитического прибора без постоянного наблюдения за ним. Такие дозаторы с успехом применяются при анализе серий проб, аналогичных по составу. Емкости с пробами помещают в коллектор, который вращательным или поступательным движением перемещает одну пробу за другой под иглу микрошприца, укрепленного в устройстве, погружающем под действием электрического импульса иглу в пробу. Это же устройство набирает пробу, перемещает шприц, располагает его непосредственно над инжектором, прокалывает иглой перегородку инжектора, вводит пробу, устанавливает шприц над коллектором с чистым растворителем, промывает иглу и ждет следующей команды. Воспроизводимость площадей пиков соответствующих веществ, дозируемых таким способом, составляет примерно 1%. [c.62]


    После перемешивания проба готова к испытанию. С помощью микрошприца вводят пробу в хроматограф. Содержание примесей х (в %) вычисляют по формуле [c.100]

    Навеску анализируемой пробы взвешивают на аналитических весах (10 г). Затем во взвешенный образец добавляют стандарт -н-нонан. Количество вводимого стандарта берут в соответствии с предполагаемым содержанием МП. Пробу нагревают до 80°С и тщательно перемешивают. Ввод пробы осуществляют микрошприцем в объеме [c.156]

    Ввод пробы в капиллярную колонку отличается от дозировки пробы в обычных колонках не только уменьшением размеров дозаторов, но и по существу. Уменьшение количества пробы приблизительно в 5000 раз с переходом от насадочной колонки к капиллярной существенно осложняет манипуляции с вводом пробы. Если даже вводить пробу в капиллярные колонки при помощи микрошприцев, то приходится иметь дело с большим, чем это требуется для капиллярной колонки, количеством вещества. Образующийся избыток пробы необходимо отводить до ввода в колонку. Проще всего это осуществляется при помощи делителя потока газа-носи- [c.201]

    Поставив ручку 13 в положение белое пятно , открыть кран 10 для выхода исследуемого газа. В этом положении исследуемый газ проходит через дозировочный объем спиральной трубки 9. Чтобы дозировочная трубка была заполнена полностью только исследуемым газом, продуть ее не менее чем трехкратным объемом этого газа. В конце продувки закрыть кран 10, а затем кран пробоотборника. Чтобы давление газа в дозировочном объеме было атмосферным, открыть кран 10 на мгновение, спустить лишний газ, повернуть ручку 13 на 60° и поставить ее (по фиксатору) в положение красное пятно . В этом положении газ-носитель будет продувать дозировочный объем, направляя пробу исследуемого газа, находящуюся в нем, в колонку для разделения. Жидкую пробу вводят через резиновую мембрану испарителя 14 микрошприцем. Здесь проба испаряется при температуре на 70—80 град выше температуры колонки. Температура испарителя не регулируется и может быть равна 100 или 200° С. [c.168]

    Ввод пробы микрошприцем. При заполнении микрошприца жидкостью предварительно удалить из него воздух. Это можно сделать, многократно наполняя шприц жидкостью и быстро выталкивая ее в жидкость. Вязкие жидкости набирать в шприц медленно. Из-за очень быстрого выталкивания такой жидкости шприц может разбиться. В шприц набирать жидкости в два раза больше того количества, которое требуется ввести. [c.237]

    Ввод пробы микрошприцем. При заполнении микрошприца жидкостью предварительно удаляют из него воздух. Это можно сделать, многократно наполняя шприц жидкостью и быстро выталкивая ее в жидкость. Вязкие жидкости набирают в шприц медленно. Из-за очень быстрого выталкивания такой жидкости шприц может разбиться. [c.41]


    ВНИМАНИЕ Студентам разрешается приступать к той или иной практической работе лишь после согласования с преподавателем основных этапов ее выполнения и последовательности операций по включению и выведению хроматографа на рабочий режим по проведению собственно хроматографического анализа по обработке полученных хроматограмм. С полученными от лаборанта для выполнения той или иной работы инструментами и, особенно, микрошприцами необходимо обращаться бережно. Внимательно ознакомьтесь с инструкцией по их эксплуатации. Не забывайте промывать микрошприцы подходящим растворителем и просушивать их в струе воздуха от компрессора или в вакууме водоструйного насоса, перед дозированием каждого очередного анализируемого образца. Пренебрежение этой процедурой может привести к значительному искажению результатов анализа. О каждой выполненной лабораторной работе должен быть составлен отчет в рабочей тетради. Вместе с отчетом преподавателю необходимо предъявлять итоговые хроматограммы. Хроматограмма должна рассматриваться как рабочий документ, на котором непосредственно во время работы студент должен обязательно записывать все условия проведения анализа, количество (дозу) и название анализируемого образца, отмечать момент ввода пробы и делать, кроме того, вспомогательные заметки, облегчающие расшифровку хроматограмм. Последовательность выполнения и количество лабораторных работ во время практикума, определяется преподавателем и индивидуальна для каждо- [c.119]

    Ход работы. Колонку, заполненную адсорбентом, помещают в термостат хроматографа и кондиционируют ее в течение 3 ч. Затем соединяют колонку с детектором и проверяют герметичность газовых линий. Устанавливают ток моста катарометра 150 мА. После стабилизации нулевой линии определяют постоянную прибора К. Для этого вводят в дозатор-испаритель калиброванным микрошприцем разные пробы бензола от 1 до 8 мкл. На полученных хроматограммах измеряют площади пиков и строят график зависимости а 5 от ди. Наклон этой кривой дает константу детектора К. [c.254]

    Выполнение работы. Включают прибор согласно инструкции. Устанавливают температуру термостата колонки 80 °С, температуру термостата детектора 160°С, температуру испарителя 170°С. Газ-носитель пропускают через колонку со скоростью 65 мл/мин, контролируя ее пенным расходомером. Подают токовую нагрузку на ДТП 130 мА. Указатель шкалы чувствительности устанавливают в положение 1 4 . После установления на хроматограмме стабильной нулевой линии в испаритель хроматографа вводят микрошприцем анализируемую пробу 0,5—1,0 мкл ( см) в зависимости от содержания компонентов. На хроматограмме получают три пика. Хроматографирование повторяют три раза. Измеряют /д для каждого компонента на трех хро- [c.198]

    Более простое устройство имеет система напуска жидкостей с применением резиновых мембран (рис. 3.2). Она состоит из обогреваемого баллона напуска 1 с высокотемпературными резиновыми мембранами 2 и молекулярного натекателя 3. В баллоне напуска с помощью форвакуумного и высоковакуумного насосов создается высокий вакуум и через мембрану с помощью микрошприца вводят жидкий анализируемый образец. Жидкость испаряется и пары (давление -10 торр) через молекулярный натекатель поступают в ионный источник. Для предотвращения попадания воздуха в баллон напуска при введении пробы пространство между мембранами откачивают форвакуумным насосом. [c.40]

    Построение калибровочных кривых на основе внутреннего стандарта. Предварительно готовят жидкие смеси с точным содержанием отдельных компонентов и вещества, принятого за стандарт. Определенную часть смеси вводят в газовую пипетку, испаряют, отбирают пробу паров микрошприцем, вводят ее в колонку. [c.64]

    С помощью таких микрошприцев можно вводить пробы от 0,05 до 1 мкл. [c.25]

    Наибольшее распространение имеют петлевые инжекторы (петлевые краны). Пробу вводят в петлю заданной вместимости при давлении, близком к атмосферному, с помощью микрошприца или шприца. Затем поворотом крана петля сообщается с линией подачи растворителя от насоса и входом колонки, проба вымывается из петли и попадает в колонку. Схема работы одного из петлевых инжекторов представлена на рис. 8.9. В положении заполнение петли поток растворителя от насоса идет непосредственно в колонку, а петля соединяется с линиями сброс и ввод пробы и находится при атмосферном давлении. В этом положении петля промывается чистым растворителем с помощью шприца вместимостью 2—5 мл от остатков предыдущей пробы, затем с помощью микрошприца в петлю вводится определенный объем пробы. Проба может вводиться либо с полным заполнением петли, либо с ее частичным заполнением. Первый способ является предпочтительным при количественном анализе и позволяет получить наиболее воспроизводимые результаты анализа. Он требует для полного заполнения петли подачи в нее объема пробы, в 5—6 раз превышающего вместимость петли. Это необходимо для полного вытеснения из петли растворителя пробой. Частичное заполнение петли удобнее, так как позволяет, не меняя петли вместимостью, например, 50 мкл, вводить пробы от 1 до 40 мкл. При этом объем пробы, попадающий в петлю, не должен превышать примерно 4/5 вместимости петли. Так как объем пробы, попадающий в петлю в этом случае, не точно равен тому, который подан микрошприцем (так как часть пробы остается в подводящих каналах от конца микрошприца до начала петли), то точность количественного анализа в этом случае будет ниже, чем при полном заполнении петли. [c.147]


    Резины разных типов находят применение, особенно в старых приборах или предназначенных для учебных целей, в качестве мембран для ввода пробы в инжекторы с использованием микрошприцев высокого давления. Для систем обращен-но-фазных рекомендуется использовать мягкую силиконовую резину, нормально-фазных— материалы на основе фторкаучука или нитрильных каучуков. Тем не менее все резины в большей или меньшей степени набухают в растворителях, выдерживают 20—40 вводов пробы до потери герметичности, загрязняют колонку продуктами разрушения мембраны, выделяют в растворитель стабилизаторы, пластификаторы, вулканизующие и другие [c.166]

    Система ввода пробы анализируемого образца обычно состоит из испарителя и мембраны из термостойкой резины, которая прокалывается при вводе пробы. Некоторые хроматографы снабжены также специальными дозаторами для ввода газообразных и твердых веществ. Анализируемые вещества поступают в колонку в парообразном состоянии, поэтому температура испарителя должна обеспечить возможно быстрое испарение компонентов пробы. Жидкие пробы вводят в хроматограф микрошприцем. Объем вводимой пробы зависит от типа детектора, количества неподвижной жидкой фазы и диаметра колонки. Обычно для насадочной аналитической колонки объем пробы жидкости составляет 0,1 — 1 мкл, а газа — от 0,5 до 5 мл. [c.106]

    За 30 с до ввода пробы включают тумблер диафаммной ленты потенциометра 23. Впрыскивают пробу в испаритель под руководством преподавателя. Для этого прокалывают иглой микрошприца резиновую мембрану 20 испарителя, вводя иглу [c.300]

    Простейшим является инжектор с остановкой потока ( стоп флоу ). Он включает кран для перекрывания потока перед инжектором и тройник, к которому подсоединены колонка, подводящий растворитель капилляр и заглушка (рис. 8.8). Когда нужно ввести пробу, останавливают насос, перекрывают кран, отворачивают заглушку, набирают пробу в микрошприц, вводят иглу до рупора в фильтр колонки, наносят пробу, вынимают микрошприц, заворачивают заглушку, открывают кран и включают насос. Поток растворителя вымывает пробу в колонку. Инжектор прост по конструкции, легко может быть изготовлен самостоятельно. Недостатки много ручных операций при работе, нестационарность потока растворителя дает ложный пик и затрудняет точные количественные измерения удерживания, эффективности и других параметров. [c.146]

    После определения всех поправочных коэффициентов приступают к анализу анилина. К точной его навеске добавляют микрошприцем определенное количество ортонитроанизола, перемешивают и микрошприцем вводят пробу в испаритель хроматографа. По хроматограмме определяют площади всех пиков и принимают их за 100%. Далее с помощью поправочных коэффициентов рассчитывают содержание примесей, сумму щжмесей вычитают из 100% и получают содержание анилина в техническом анилине. [c.240]

    При большинстве опытов в реактор загружали смесь изобутана и бутиленов, охлаждали ее до необходимой температуры (обычно до —30, —20 или —10°С), а затем начинали перемешивать углеводороды и 1Подавать в них по каплям серную кислоту из стеклянной бюретки. Сразу же после того, как в реакционную смесь начинала поступать кислота, смесь разогревалась, поэтому за скоростью подачи кислоты тщательно следили во избежание подъема температуры больше чем на 2°С сверх заданной (нужный объем кислоты вводили обычно за 1—5 мин). Перемешивание продолжали до момента отбора пробы. После остановки мешалки давали реакционной смеси отстояться и частично расслоиться (за 1 мин или меньше), затем охлажденным микрошприцем отбирали пробу с верха углеводородной фазы и быстро вводили ее в хроматограф. После этого вновь включали мешалку и продолжали перемешивание до отбора следующей пробы. [c.88]

    Принципиальная схема газового хроматографа представлена на рис. 57. Газ-носитель из баллона / поступает в блок подготовки газов 2, где происходит его очистка, устанавливаются объемная скорость и давление. В качестве газа-гюсителя используют гелий, азот, аргон, углекислый газ. В обогреваемый до температуры выше кипения исследуемой смеси испаритель 5, через который протекает поток газа-носителя, микрошприцем 3 через резиновую мембрану вводят пробу вещества. Захватив пары анализируемой пробы, газ-носитель поступает в хроматографическую колонку 6 — металлическую или стеклянную трубку длиной обычно от 0,5 до 4 м и диаметром 2—8 мм, заполненную гранулированной насадкой. Во избе-жение конденсации паров пробы колонка помещена в термостат 7. Выходящий из колонки газовый поток содержит зоны отдельных компонентов, разделенные зонами чистого газа-носителя и отличающиеся от них по электрической проводимости, плотности или другим параметрам. Измерение этих параметров на выходе из колонки позволяет определить относительное содержание компонента в смеси. Устройство, непрерывно регистрирующее значение того или иного параметра газового потока, называется детектором 8. [c.49]

    Методика работы. В чистый реакционный сосуд емкостью 10 мл (которым может служить флакончик из-под пенициллина) помещают 1,04 г стирола и 1 г метилметакрилата, взятых в соотношении 1 1, добавляют 4,76 г зтилббнзола и тщательно перемешивают. Затем для получения калибровочных данных из смеси отбирают микрошприцем с максимальной точностью 5—6 проб по 2 мкл и последовательно хроматографируют. После каждого ввода пробы [c.51]

    Введение пробы в капиллярные колонки осуществляется чаще всего с помощью микрошприцев. Дозируемые объемы жидкости (как правило, меньше 5 мкл) вводятся в нагреваемый и продуваемый газом-носителем блок ввода пробы. Ввиду того что количество пробы обязательно должно быть воспроизводимым, ввод пробы шприцем требует соблюдения некоторых предосторожностей. В первую очередь нужно иметь в виду то, что жидкость, содержащаяся в канюле шприца, как правило, не учитывается на шкале цилиндра, но при прокалывании и вводе иглы в горячий блок дозатора частично пспаряется. Чтобы достигнуть воспроизводимого дозирования, целесообразно определять желаемые объемы не только по микрометру шприца, а прибавлять содержание объема канюли (обычно 1—4 мкл) к объему пробы, отсчитываемому по шкале цилиндра шприца. В шприц набирают желательный объем, отводят поршень при засасывании воздуха вновь до упора, осторожным постукиванием переводят пузырек воздуха за столбик жидкости п движением поршня выбрасывают воздушную подушку так, чтобы была уверенность, что в канюле нет жидкости, а остался только воздух. Таким путем при тщательном проведении операций можно дозировать объемы жидкости порядка 1 мкл с точностью 10%. При большей величине проб ошибка значительно меньше. [c.339]

    Инжектор с резиновой мембраной по конструкции похож на предыдущий, в нем не используют кран остановки потока растворителя и на месте заглушки зажимается упругая резиновая мембрана. Ввод пробы осуществляют микрошприцем, рассчитанным на работу в герметичных условиях при высоких давлениях. Пробу вводят в поток растворителя без его остановки путем прокалывания мембраны, введения микрошприца до упора иглы в фильтр колонки и нанесения пробы. Инжектор прост по конструкции и легко может быть изготовлен. Основной недостаток — наличие резиновой мембраны, которая набухает в растворителях, теряет герметичность при многих проколах, выделяет в поток растворителя ингредиенты, дающие ложные пики и повышающие фон и шумы детектора. Частицы мембраны, выкрашивающиеся при проколах, загрязняют входной фильтр колонки, создают эффект памяти . Выбор для мемораны марки резины, наиболее устойчивой к данному растворителю, использование мембран многослойных с наружными слоями из фтор-полимеров или из металлической фольги позволяет уменьшить, но не исключить эти недостатки. Микрошприцы высокого давления также дороги, более трудно промываются и менее надежны, чем обычные. Этот тип инжектора также используют в основном для учебных целей. [c.147]

    Преимущества всех названных дозаторов заключаются в их относительной простоте изготовления и дешевизне. Однако наиболее совершенны петлевые дозаторы (рис. 5.10,в). Чаще всего применяемые дозаторы фирмы Реодайн состоят из двух взаимно пришлифованных дисков с системой каналов в них. К каналам подключаются все необходимые коммуникации подвода и отвода подвижной фазы, ввода проб и сброса растворителя, а также дозирующая петля Д. Поворотом одного диска относительно другого можно изменять взаимный порядок подключения коммуникаций. При заиолнении дозатора под высоким давлением оказываются входы , 2 и канал между ними. Входы 3—6, каналы между ними и дозирующая петля находятся при атмосферном давлении, что позволяет беспрепятственно заполнить дозирующую петлю с помощью шприца или любым другим способом. При повороте диска поток подвижной фазы вытесняет содержимое дозирующей петли в колонку. При этом исключаются погрещности ввода пробы, связанные с неверным отсчетом объема в микрошприце, так как вводимый в дозатор объем превышает объем дозирующей петли. Устройства этого типа могут работать при давлениях до 600 бар, их отличительной чертой является гибкость при решении различных задач. Так, при желании можно варьировать объем пробы, вводя в петлю не избыточное, а необходимое ее количество, отмеренное ширицем. Сама дозирующая петля может быть выполнена сменной, что позволяет одним и тем же дозатором вводить пробы от 10 мкл до 10 мл. [c.196]

    Автосамплер для отбора и ввода паровой фазы типа HS 800 состоит из хранилища для 32 сосудов вместимостью каждый 10 мл, устройства для по -держания заданной температуры сосудов в пределах 40—150°С, электрически нагреваемой печи на 6 позиций, устройства для регулирования объема вводимой пробы в пределах 50—2500 мкл с интервалом 10 мкл, автоматического устройства для регулирования момента отбора пробы и продолжительности ввода пробы, устройства для продувки инжектора и повышения температуры микрошприца, набора инжекторов дл я реализации различных режимов ввода проб в газовый хроматограф. [c.454]


Смотреть страницы где упоминается термин Микрошприцы для ввода проб: [c.86]    [c.122]    [c.279]    [c.139]    [c.64]    [c.146]    [c.194]    [c.197]    [c.329]    [c.219]    [c.120]    [c.146]    [c.64]    [c.146]    [c.64]   
Руководство по газовой хроматографии (1969) -- [ c.339 , c.340 ]

Руководство по газовой хроматографии (1969) -- [ c.339 , c.340 ]




ПОИСК







© 2025 chem21.info Реклама на сайте