Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фаза поверхностная жидкая конденсированная

    Большая роль межфазного поверхностного натяжения о в процессе зародышеобразования указывает на то, что в случае кристаллизации вещества в двух кристаллических модификациях, стабильных при двух различных температурах, стабильная модификация может возникнуть не сразу. Дело в том, что о, как правило, ниже у модификации, стабильной при более высокой температуре, поэтому вероятность ее образования выше. Так, например, при температурах вблизи точки замерзания воды ее пересыщенные пары сначала конденсируются (ожижаются), а затем уже происходит кристаллизация (образование града). При температурах значительно ниже точки замерзания воды ее пересыщенные пары сразу кристаллизуются, минуя переход в жидкую фазу (образование снега). [c.685]


    Уравнение Кельвина рассматривает энергетический баланс конденсирующейся капли. По мере образования капли (или зародыша) ее свободная поверхностная энергия изменяется от О до . Если свободная энергия одной молекулы равна и в паровой фазе и в жидкой фазе, а общее число молекул, находящихся в [c.825]

    Соотношение между массами жидкой и твердых фаз, т. е. Ж Т, в суспензии, находящейся в экстракторе, поддерживают равным (1,7- 2,5) 1. Из первого реактора суспензия перетекает во второй, откуда основную ее часть мощными погружными насосами 7 (установлено два насоса с подачей по 600 м /ч) подают в вакуум-испаритель 8. Последний представляет собой резервуар, где с помощью вакуум-насоса поддерживают пониженное давление. Вследствие этого поступающая в него жидкость оказывается перегретой и закипает, причем из нее выпаривается некоторое количество воды. Это приводит к понижению температуры на 3—5 °С (резкое снижение температуры недопустимо). Газы из вакуум-испарителя через брызгоуловитель 9 отводят в поверхностный конденсатор 10, где конденсируются пары воды и улавливается часть соединений фтора. Окончательную очистку газа от фтора осуществляют в барботажном нейтрализаторе (вакуум-испари- [c.177]

    К наиболее вероятным экстенсивным механизмам переноса жидкой фазы можно отнести капиллярный перенос под действием разности капиллярных давлений (потенциалов) и термокапиллярное течение. Перенос газов и паров может происходить по механизмам молекулярной (кнудсеновской), поверхностной и активированной (нормальной) диффузии. При этом пары в капиллярах субмикроскопических размеров конденсируются, что приводит к изменению фазового состояния низкомолекулярного вещества и осложнению процесса. В тупиковых порах происходит растворение сконденсировавшегося вещества в полимерном связующем стенок дефектов и дальнейший перенос через матрицу по механизму активированной диффузии. [c.34]

    В колонне 9 конденсируются пары воды и небольшое количество аммиака, одновременно образуются соли аммония, растворяющиеся в аммиачной воде. Жидкость возвращается на дистилляцию, газовая фаза (в основном аммиак с небольшими примесями СОг, азота и паров воды) поступает в поверхностный конденсатор 11, охлаждаемый водой, где часть аммиака сжижается при температуре 35—40°С. Этот конденсат частично используется для орошения колонны фракционирования 9, куда он подается плунжерным насосом 16. Остальное количество жидкого аммиака поступает в сборник 3, откуда возвращается в колонну синтеза 7. Таким образом производится рециркуляция части избыточного аммиака. [c.76]


    Тепловая труба состоит из герметичного корпуса, внутренние стенки которого выложены фитилем, имеющим капиллярную структуру. Фитиль заполнен жидким теплоносителем, в свободном объеме внутренней полости находится паровая фаза теплоносителя. Тепловой поток передается путем непрерывной циркуляции испаряющегося и конденсирующегося теплоносителя. В результате испарения жидкости в зоне подвода теплоты и конденсации пара в зоне конденсации (отвод теплоты) возникает перепад давлений между концами трубы, пар перемещается вдоль трубы, переносит поглощенную им теплоту. Возврат конденсата происходит по капиллярам фитиля под действием сил поверхностного натяжения. [c.435]

    ЖИДКИМ теплоносителем, в свободном объеме внутренней полости находится паровая фаза теплоносителя. Тепловой поток передается путем непрерывной циркуляции испаряющегося и конденсирующегося теплоносителя. В результате испарения жидкости в зоне подвода теплоты и конденсации пара в зоне конденсации (отвод теплоты) возникает перепад давлений между концами трубы, пар перемещается вдоль трубы, переносит поглощенную им теплоту. Возврат конденсата происходит по капиллярам фитиля под действием поверхностного натяжения. [c.196]

    Обогрев или охлаждение можно проводить также с помощью тепловых труб [57, 58]. Тепловая труба имеет герметичный корпус, на внутренней поверхности которого расположен капиллярно-пористый материал — фитиль, пропитанный жидкой фазой теплоносителя. Корпус выполняют обычно из круглой трубы (но имеются и плоские тепловые трубы). Тепловой поток подводят к участку корпуса на одном из концов тепловой трубы. Внутри трубы на этом участке теплоноситель испаряется, и его пары движутся по центральной части трубы к охлаждаемому участку, где они конденсируются. Жидкая фаза по фитилю возвращается в зону испарения. Плотность теплового потока на участке поверхностн корпуса трубы зависит от размеров обогреваемого и охлаждаемого участков, и поэтому имеется возможность концентрировать тепловой поток на одном из участков трубы. Уровень рабочих температур зависит от выбранного для тепловой трубы теплоносителя. Имеются трубы для различных диапазонов температур О—200, 200—550, 550—750 и выше 750 К. В качестве теплоносителей для высокотемпературных труб используются щелочные металлы. Для этих труб реализуются плотности теплового потока (в расчете па поперечное сечение трубы) до 15 кВт/см , Конструктивные особенности тепловых труб и области их применения рассмотрены в [5SJ. [c.423]

    Здесь М, и р — молекулярная масса и плотность конденсирующегося компонента Е — коэффициент поверхностного натяжения жидкой фазы. Поскольку Е зависит от давления и температуры (см. раздел 17.1), то з тоже зависит от этих параметров. Таким образом, если при значениях р2 и Г, за дросселем имеем 1 < 5 < то образования новой фазы в дросселе не происходит. Будем рассматривать случай 5 > 5 . Значение парциального давления пара можно найти, если известна его мольная доля Для оценки воспользуемся соотношением для идеального газа р,, = р2Уь и выражением для [9] [c.417]

    Приведенные данные свидетельствуют о том, что травление кристаллов ИАГ в процессе их роста происходит именно над зеркалом расплава. Механизм травления поверхностн растущего кристалла ИАГ можно объяснить следующим образом. Продукты термической диссоциации оксида алюминия, испаряющиеся с зеркала расплава, конденсируются на растущем кристалле и в зоне высокой температуры взаимодействуют с его поверхностью, обн разуя низкотемпературные эвтектики. В результате этого взаимо- действия состав поверхностного слоя кристалла изменяется от ИАГ в сторону эвтектики ИАГ, АЬОз, которая имеет более низкую температуру плавления по сравнению с температурой плавления граната. Образующийся на поверхности кристалла расплав эвтектического или близкого к нему состава стекает вниз по кристаллу, оставляя характерные бороздки стекания жидкой фазы, т. е. протравливает поверхность ИАГ. [c.222]

    При высоких температурах в поверхностном слое огнеупора может произойти плавление части наиболее легкоплавких компонентов, что отрицательно сказывается на механической и химической стойкости этих слоев. Появление в большом количестве жидкой фазы в огнеупоре и клинкере приводит к взаимной миграции расплавов. Высокоизвестковый клинкерный расплав, отличаясь химической агрессивностью по отношению к кислотным окислам и повышенной подвижностью, диффундирует в толщу огнеупора по капиллярам и трещинам и застывает в более холодных его участках. Наряду с чисто механическим проникновением жидкой фазы клинкера в огнеупор наблюдается и процесс ионной диффузии отдельных катионов, приводящий к нестехиометрическому обогащению отдельных участков огнеупора составляющими клинкерного расплава. В частности весьма интенсивно в ионный обмен вступают РеЗ+, АР+ и Na+. Составляющие огнеупора (Mg +, Сг +) диффундируют в клинкер в значительно меньшем количестве. Летучие соединения натрия, калия, серы, хлора, фтора, проникающие в огнеупор, конденсируются и вступают во взаимодействие с составляющими его минералами MgO, MgO-AbOs, Mg0- r20s и др., образуя новые фазы и твердые растворы. Структура огнеупора изменяется и в нем появляются зоны низкой прочности, по которым он часто и скалывается под тяжестью обрывающейся обмазки. [c.292]


    В некоторых случаях процесс поглощения вещества, начавшись на поверхности, распространяется в глубь поглотителя. Такие процессы можно разделить на три класса абсорбция, хемосорбция и капиллярная конденсация. Примером абсорбции может служить поглощение платиной или палладием водорода-При хемосорбции происходит химическое взаимодействие сорбтива с сорбентом с образованием нового химического вещества. Например, СОг, приведенное в соприкосновение с порошком СаО, химически взаимодействует с последним с образованием новой твердой фазы — СаСОз. Этот процесс постепенно распространяется в глубину зерен порошка, давая там то же самое химическое соединение — СаСОз. При хемосорбции новая фаза может и не появляться, например, при взаимодействии газообразного аммиака с водой образуется гидроокись аммония, но число фаз в системе не изменяется. Наконец, в процессах хемосорбции возможны, как это установил Н. А. Шилов, случаи образования так называемых поверхностных соединений, когда между поверхностными атомами адсорбента и атомами адсорбтива устанавливается химическая связь, однако новой фазы и нового химического соединения, которое можно было бы выделить, не возникает. Такие поверхностные соединения образуются на границе соприкосновения угля и стали с кислородом воздуха, обусловливая в последнем случае пассивирование металла. Капиллярная конденсация наблю 1ается при контакте пористых сорбентов с парами легко конденсирующихся веществ. Капиллярная конденсация может происходить только при определенной температуре, давлении и при достаточном смачивании жидким сорбтивом поверхности стенок капилляра. Из курса физики известно, что, если жидкость смачивает стенки капилляра, то при одной и той же температуре, давление насыщенного пара над вогнутой поверхностью жидкости меньше давления пара над плоской поверхностью той же жидкости. В результате этих различий, пар, ненасыщенный по отношению к плоской поверхности, может оказаться насыщенным и даже пересыщенным по отношению к вогнутой поверхности, тогда пар начнет конденсироваться над мениском и капилляры будут заполняться жидкостью. Таким образом, капиллярная конденсация происходит не под действием адсорбционных сил, а является результатом притяжения молекул пара к поверхности мениска жидкости в мелких порах, где имеется пониженное давление пара. Капиллярная конденсация играет значительную роль в водном режиме почв. [c.281]


Смотреть страницы где упоминается термин Фаза поверхностная жидкая конденсированная: [c.283]    [c.670]    [c.222]    [c.11]    [c.415]    [c.167]    [c.417]    [c.18]   
Адсорбция газов и паров Том 1 (1948) -- [ c.732 ]

Адсорбция газов и паров (1948) -- [ c.732 ]




ПОИСК





Смотрите так же термины и статьи:

Жидкая фаза

Конденсированные ВВ

Пар конденсирующийся



© 2024 chem21.info Реклама на сайте