Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пассивирование химическое металлов

    Электрохимическое полирование представляет собой анодную обработку металла для создания ровной и блестящей поверхности. Изделие, имеющее микро- и макронеровности, является анодом электролизера. Катодом служит металл, химически не растворимый в растворе электролита. В качестве растворов электролитов используют растворы фосфорной, хромовой, серной, уксусной, плавиковой кислот и др. В процессе электрополировки происходит анодное растворение металла на макро- и микровыступах, в результате чего поверхность становится гладкой и блестящей. На катоде выделяется водород. Механизм электрополировки окончательно не выяснен. Эффект электрополирования обычно связывается с действием вязкой пленки, образующейся в прианодном слое, затрудняющем растворение металла в углублениях по сравнению с растворением на выступах, а также поочередным пассивированием и активированием металла. [c.373]


    Пассивированные металлы имеют иные химические и электрохимические свойства, чем металлы в обычном, активном состоянии. Пассивное железо не вытесняет медь из растворов ее [c.635]

    Пассивирование поверхности стальных изделий с целью кратковременной защиты их от воздействия окружающей среды проводят химической или электрохимической обработкой в кислых или щелочных растворах. Эффективность такого метода защиты от коррозии определяется условиями пассивирования, составом металла, а также состоянием его поверхности. Наибольшее повышение стойкости против коррозии достигается при пассивировании легированных сталей, причем длительность защитного действия пассивных пленок значительно больше, чем при обработке углеродистых сталей. [c.14]

    Большое значение для коррозионных процессов имеет способность металла образовывать на поверхности прочные оксидные пленки. Так, алюминий окисляется легче железа, но он более стоек к коррозии, так как окисляясь кислородом воздуха, покрывается плотной пленкой оксида. На этом явлении основана пассивация металлов, заключающаяся в обработке их поверхности окислителями, в результате чего на поверхности металла образуется чрезвычайно тонкая и плотная пленка, препятствующая оррозии. Примером может служить пассивация железа концентрированной азотной кислотой, открытая еще М. В. Ломоносовым, или. воронение стали в щелочном растворе нитрата и нитрита натрия. Пассивированием объясняется также химическая стойкость нержавеющих сплавов и металлов, на поверхности которых под действием кислорода воздуха образуется защитный слой оксидов, [c.148]

    Изложенные представления о росте кристалла весьма упрощенны. В реальных условиях электролиза мы сталкиваемся с торможением или даже- полным прекращением роста кристаллов в результате катодного пассивирования. Пассивирующим фактором может быть, например, адсорбция на поверхности грани Поверхностно-активных веществ, находящихся в электролите. Пассивация может иметь место также в результате химического взаимодействия металла с электролитом, приводящего к образованию окисных, сульфидных и других пленок. [c.126]

    Анодная пассивность выражается в резком торможении процессов растворения металлов по достижении определенного потенциала. При этом металл становится как бы более благородным. Наступление пассивности сопровождается самопроизвольным возрастанием поляризации при одновременном падении проходящего через электролит тока, хотя внешний поляризующий ток не изменяется. Явление анодной пассивности особенно характерно для железа, никеля, а также хрома, титана, молибдена и некоторых других металлов. Пассивированные металлы отличаются иными химическими и электрохимическими свойствами, чем металлы в обычном активном [c.430]


    Следует иметь в виду, что окислительное действие кислородсодержащих кислот, например концентрированных азотной и серной, может быть использовано для пассивирования черных металлов, повышения их химической стойкости. [c.11]

    И и к е л ь не окисляется на воздухе и легко растворяется только в разбавленной азотной кислоте. Химическая стойкость никеля обусловлена его склонностью к пассивированию, связанному с образованием на поверхности металла защитной оксидной пленки.С кислородом он начинает взаимодействовать только при 500°С. И лишь в измельченном состоянии при нагревании N1 реагирует с галогенами, серой и другими неметаллами. С большинством из них он, как и многие -элементы, образует соединения переменного состава (в том числе и металлоподобные). Из соединений никеля практическое значение имеют главным образом те, в которых никель имеет степень окисления +2. Оксид N 0 и гидроксид Ы1(0Н)2 в воде не растворяются, но легко растворяются в кислотах и растворах аммиака. Взаимодействия идут с образованием комплексных ионов  [c.297]

    Предположение о том, что остановка растворения в этом и других подобных случаях обусловлена появлением на поверхности химически связанного кислорода, высказал М. Фарадей. Он же применительно к такому инертному состоянию металла ввел в употребление тер-мин пассивность . К настоящему, моменту на механизм пассивирования и природу пассивных пленок установились две основные точки зрения. Согласно одной из них, торможение процессов на границе фаз металл — раствор наступает в результате образования на поверхности металла фазовой окисной пленки. Согласно другой точке зрения, пассивирование металлов и сплавов обусловлено адсорбцией на поверхности кислорода и некоторых кислородсодержащих соединений. [c.394]

    В ряду напряжений хром располагается между Zn и Fe, между тем на холоду внесенный в НС1 металл начинает растворяться не сразу. Обусловлено это наличием на его поверхности тончайшего (и поэтому незаметного), но очень плотного слоя химически малоактивной окиси (СгаОз), препятствующей взаимодействию металла с кислотой. Окись эта растворяется в H l при нагревании и может быть удалена также простым соскабливанием погруженной в жидкость поверхности. Однако на воздухе к хрому возвращается его пассивность. Таким образом, по существу хром на воздухе окисляется, но практически окисление незаметно, так как образовавшийся слой окиси предохраняет металл от дальнейшего разрушения. С образованием подобной защитной пленки связана и пассивность хрома по отношению к азотной кислоте (и другим окислителям). Пассивирование под действием окислителей довольно характерно также для молибдена и вольфрама. При температуре красного каления Сг, Мо и W взаимодействуют с водяным паром, вытесняя водород. [c.371]

    В зависимости от характера агрессивной среды применяются различные методы защиты металлов от коррозии. К ним относятся, в основном, следующие 1) пассивирование поверхности, т. е. создание на поверхности изделия окисной пленки 2) электрохимическая защита (протекторная или электротоком), при которой защищаемое изделие становится катодом и не корродирует 3) обработка агрессивной среды для снижения ее активности путем введения ингибиторов (замедлителей) или веществ, химически связывающих активатор коррозии, например кислород в воде и нейтральных водных растворах 4) покрытие поверхности неметаллическими химически устойчивыми материалами лаками, красками, эмалями, резиной, пластмассами и т. п. 5) нанесение на поверхность изделий металлических покрытий 6) применение летучих ингибиторов и других средств. [c.54]

    Водяной пар и кислород диффундируют через любые органические материалы покрытий количественные зависимости описываются коэффициентами проницания, значения которых для этих газов и некоторых важных материалов покрытий приведены в табл. 5.5. Кислород, диффундирующий через эти покрытия, может вызвать процессы коррозии на поверхности металла при взаимодействии с одновременно диффундирующим водяным паром только в том случае, если происходит активация обычно пассивированного металла материалом покрытия или грунтовки. На эти процессы могут влиять химические свойства покрытия и другие вещества, которые тоже могут диффундировать из среды через покрытие, а также микрофизические особенности на границе раздела. Однако эти факторы изучены еще недостаточно. Для оценки опасности коррозии могут быть использованы частичные реакции по формулам (2.17), (2.21) и (4.3) для железа [19, 20]  [c.157]

    Никелевые покрытия. Химическая устойчивость никеля в различных средах обусловлена сильно выраженной способностью его к пассивированию. Никелевые покрытия защищают стальные изделия от коррозии только механически при отсутствии в них пор. Эти покрытия используют для защиты от коррозии деталей из стали и цветных металлов (медь и ее сплавы), декоративной отделки поверхности, а также для повышения износостойкости трущихся поверхностей. Никелевые покрытия нашли широкое применение в машиностроении, приборостроении, радиотехнической и автомобильной промышленности. [c.88]


    Метод химического пассивирования заключается в том, что в воду вводят окислитель, под действием которого на металле образуется пассивная пленка, снижающая скорость коррозии. [c.122]

    При соприкосновении металла с кислородом последний может либо адсорбироваться на металлической поверхности, образуя пассивирующие слои, либо энергично реагировать с ней, образуя химические соединения. Для того чтобы решить вопрос о том, будет ли кислород реагировать с металлической поверхностью, надо знать, что легче электрону покинуть металлическую решетку и образовать адсорбированный ион кислорода, или атому металла оставить решетку и образовать металлический окисел. Тенденция к протеканию того или иного процесса зависит от отношения рабочей функции к теплоте сублимации [22]. Если это отношение (выраженное, например, в Электронвольтах) больше единицы, то металл-иону с термодинамической точки зрения легче покинуть металлическую решетку. Если оно меньше единицы, то электрону легче покинуть решетку, и в этом случае имеет место адсорбция кислорода и пассивирование поверхности. [c.8]

    Пассивирование с помощью нитробензоатов аминов является, таким образом, типичным примером пассивирования металла за счет ускорения катодной реакции восстановления ингибитора, которая сообщает электроду необходимый потенциал. Каким же образом достигается пассивация при использовании ингибиторов, не обладающих окислительными свойствами или обладающих таковыми, но восстанавливающихся с большим перенапряжением На этот вопрос можно частично получить ответ, используя метод химической пассивации, а также другие физико-химические методы исследования ингибиторов. [c.54]

    Ныне такие сплавы уже получены и широко применяются. Например, химическая устойчивость нержавеющего, кислотоупорного железохромоникелевого сплава почти такая же, как у платины. Естественно, что химические аппараты, подвергающиеся действию агрессивных сред, выгоднее изготовлять из таких сплавов, а не из дорогих материалов типа платины или кварца (последний к тому же очень хрупок). В электрохимической промышленности дорогостоящие платиновые поверхности также целесообразно заменить гораздо более дешевыми пассивированными металлами (железом, никелем). [c.197]

    К аналогичным результатам приводит изучение явлений анодной пассивности в щелочных растворах, в которых такие металлы, как железо и никель, очень быстро принимают сильно электроположительный потенциал и теряют способность растворяться на аноде. Это дает возможность употреблять их в качестве нерастворимых электродов при электролитическом получении кислорода и водорода путем электролиза щелочных растворов. Так как электрохимический метод исследования, в его применении к изучению пассивности, является весьма чувствительным, то химическое исследование действия щелочей на металлы было углублено применением методов электрохимических. В ряде работ было показано, что самые концентрированные растворы щелочи могут оставлять железо до некоторой степени активным, причем наблюдается некоторый оптимум пассивирования (при концентрации щелочи около 4 н.). Особенно заметно проявляется активность железа при более высокой температуре, что, повидимому, стоит в связи со свойством защитной пленки растворяться при таких условиях в щелочных растворах. [c.425]

    В заключение отметим, что Тамман признавал участие кислорода в пассивировании железа, но не рассматривал этот процесс, как химическую реакцию. Им было высказано предположение, что атомы кислорода внедряются в кристаллическую решетку железа и, не изменяя его внешнего вида, предохраняют металл от дальнейшего окисления. Аналогичные утверждения высказывались в последнее время Б. В. Эршлером. Однако очень трудно было бы представить, что в данном случае процесс ограничивается только механическим внедрением кислорода, так как система свободное железо — свободный кислород является термодинамически неустойчивой. Неясная теория процесса пассивирования, предложенная Тамманом и др., не может дать вполне конкретных представлений о химизме пассивирования. [c.438]

    Из существующих теорий для объяснения пассивного состояния металлов рассмотрим наиболее обоснованные и признанные — пленочную и адсорбционную. Пленочная теория пассивности объясняет состояние повышенной электрохимической устойчивости металлов образованием на их поверхности очень тонкой защитной пленки из нерастворимых продуктов взаимодействия металла со средой. Пленка состоит обычно из одной фазы, может быть солевой, гидроокисной или (наиболее часто) окисной природы. Поведение металла в пассивном состоянии определяется, таким образом, не свойствами самого металла, а физико-химическими свойствами пленки. Образовавшийся на анодной поверхности при электрохимическом процессе фазовый окисел вызывает более стойкое пассивирование в кислородсодержащем электролите, имеющем нейтральную или щелочную реакцию. Вместе с тем при анодной поляризации металла в кислородсодержащих кислотах образовавшаяся пассивная пленка находится в состоянии динамического равновесия с раствором, т. е. растворение внешней части пленки под химическим воздействием электролита компенсируется одновременным процессом анодного возобновления пленки. [c.28]

    В зависимости от химической природы металла и физикохимических параметров электролита активирующее действие анионов проявляется при определенных значениях электродного потенциала [44]. При изменении величины потенциала анионы могут оказывать противоположное (пассивирующее) воздействие на растворяющийся металл. Хлорнокислый электролит, активирующий железо, имеющее высокий потенциал при меньших значениях положительной поляризации способствует его пассивированию. Относительная активность анионов различной природы, их способность активировать металл, в частности железо, может быть охарактеризована следующим рядом [207]  [c.30]

    Для правильной оценки химической стойкости металла в жидкой или газовой среде имеет большое значение продолжительность испытания.. Нельзя ограничиваться кратковременными испытаниями,, если изделие должно работать длительное время в агрессивных средах. Часто встречающиеся в литературе расхождения в оценке скорости коррозии для одного и того же металла или сплава в одинаковых средах объясняются различной продолжительностью испытаний. Это относится к тем случаям, когда скорость коррозии под действием среды (газа или жидкости) либо возрастает или уменьшается с течением времени, либо становится близкой к нулю в результате протекания процесса самопроизвольного пассивирования. [c.18]

    Электрохимическое полирование более эффективно, чем химическое, и менее трудоемко, чем механический способ обработки. Электрохимическое полирование проводится на аноде при высоких плотностях тока (150—1000 А/м ) и 60—80°С. Эффект сглаживания поверхности при электрохимическом полировании обусловлен тем, что скорость растворения металла на микровыступах больше, чем в микроуглублениях, вследствие различных условий пассивирования поверхности в растворах. В микроуглублениях образуется пассивная, более толстая и устойчивая пленка, которая растворяется медленнее, чем на микровыступах. [c.139]

    Отсутствие явной взаимосвязи между степенью торможения скорости катодного процесса и структурой, стабильностью, а также зарядом комплексных ионов палладия дает основание считать, что причиной перенапряжения являются вторичные процессы, которые протекают у поверхности катода нри электроосаждении этого металла. В результате происходит взаимодействие поверхности электрода с продуктами вторичных химических или электрохимических реакций, которое, как и в случае описанных выше цианистых растворов, приводит к возникновению пассивирующей катод пленки. Таким образом, величину катодной поляризации палладия в решающей степени определяет соотношение скоростей пассивирования и активирования поверхности электрода в процессе электролиза. [c.184]

    Химическое пассивирование металлов как метод предупреждения кислородной коррозии в воде высокой чистоты, теоретически обоснованный и разработанный Я. М. Колотыркиным, Т. X. Маргуловой, Г. М. Флорианович и О. И. Мартыновой [32, 47, 66], представляет практический интерес для защиты оборудования из стали и алюминия на химических производствах. Этот метод борьбы с коррозией применяется на многих объектах промышленности, использующих в качестве рабочей среды воду высокой чистоты [67]. Метод позволяет снижать концентрацию гидроксидов железа в теплоносителе с 20 до 4— 7 М кг/кг и ликвидировать коррозию как при низких, так и при высоких температурах. [c.122]

    На способности металлов к самопроизвольному переходу в пассивное состояние основан метод их защиты путем химического пассивирования. При пассивировании металл погружают в раствор окислителя и благодаря образованию плотного окисного слоя на его поверхности он хорошо противостоит коррозионному воздействию других сред. [c.67]

    В настоящее время переход металла в пассивное состояние чаще всего объясняют образованием на его поверхности хемосорбнрованного слоя атомов кислорода, т. е. химически соединенного с поверхностными атомами металла. При этом атомы кислорода могут покрывать как всю поверхность металла, так и часть ее. При пассивации потенциал металла сильно облагораживается, т. е. делается более положительным. Пассивированием объясняют коррозионную стойкость нержавеющих сталей (сплавов). [c.249]

    Известно, что даже при осаждении одного металла может происходить поляризация, обусловленная в той или иной степени замедленным разрядом ионов, пассивированием поверхности металла, концентрационными изменениями в прикатодном слое и задержками, связанными с образованием и ростом кристаллической решетки. При осаждении сплавов картина значительно осложнена. Например, при совместном разряде двух металлов, выделяющихся по отдельности с химической поляризацией, могут возникнуть концентрационные изменения в прикатодном слое, если скорости их разряда значительно отличаются и диффузия не успевает выравнивать неодинаковую убыль ионов из этого слоя. Кроме тбго, при электроосаждении сплавов очень важно знать зависимость их состава от плотности тока, чего не дают уравнения (1) и (2). Позднее [188] было предложено уравнение совместного разряда с учетом потенциала нулевого заряда, содержащее, однако, ряд постоянных, которые невозможно заранее рассчитать, поэтому по данному уравнению пока нельзя рассчитать и состав сплава. Поскольку пока нет проверенных количественных зависимостей составов сплавов от плотности тока, концентрации ионов и комплексообразователей в растворе, температуры и других факторов, ограничимся рассмотрением качественных зависимостей. [c.46]

    Электрохимические свойства металлов и электродные реакции. Металлы группы железа обладают высокой адсорбционной способностью, как и все другие металлы VIII группы. Наиболее ярко эта способность выражена у никеля. Адсорбционная способность является причиной известной склонности металлов труппы железа к пассивированию на воздухе. Эти химические свойства оказывают значительное влияние и на электрохимическое поведение металлов группы железа (см. табл. 4-2). При электролизе такие свойства могут проявиться в затруднениях при разряде иона и распределении тока в пользу водорода, а также в пассивировании анодов, что ведет к обеднению электролита по основному иону и снижению pH. Поэтому необходим лодбор условий, способствующих разряду ионов металлов. [c.402]

    Металлы группы железа обладают высокой адсорбционной способностью и способностью поглощать газы, как и все другие ме таллы VIII группы. Сильнее эта способность выражена у никеля. Адсорбционная способность является причиной известной склонности металлов группы железа к пассивированию на воздухе. Эти химические свойства оказывают значительное влияние на электрохимическое поведение металлов группы железа (см. табл. IX-1). [c.289]

    Борьба с коррозией является народнохозяйственной задачей, поэтому исследования теории коррозии и проведение мероприятий по защите металлов от разрушения имеют первостепенное значение. Защита металлов от коррозии производится путем нанесения металлических покрытий из более стойких в данной среде металлов, нанесения лаков, красок, пластмасс и т. д. Среди различных методов защиты все большее значение приобретает пассивирование металлов. Некоторые металлы (Ре, N1, Сг, А1, и др.) в определенных условиях (состава и концентрации среды, /°, р) переходят в состояние высокой химической устойчивости, тогда как в исходных условиях ведут себя, как химически неустойчивые. Так, если железо погрузить в раствор разбавленной НМОз, то наблюдается интенсивное растворение металла. Однако при достижении некоторого предельного значения концентрации кислоты растворение металла прекращается и наблюдается переход его в пассивное состояние. При этом потенциал железа становится более положительным. Железо после пребы- [c.270]

    В ряду стандартных электродных потенциалов металлов располагается меаду магнием и цинком и является активным металлом. Однако химическая активность марганца в компактном состоянии сильно снижается за счет пассивирования поверхности оксидной пленкой. При нафевании марганец сгорает на воздухе, образуя оксид состава МП3О4. Энергично юаимодействуег с галогенами, при этом образуются преимущественно солеобразные галогениды марганца (II). При нафевании марганец взаимодействует со всеми остальными неметаллами. Водород хорошо растворим в марганце, но химических соединений не образует. [c.46]

    Среди перечисленных операций активирование поверхнооти является определяющей в обеспечении сцепления. Недостатком химического траг-вления металлов в различньк растворах кислот являются неравномерное растворение дефектного слоя, неизбежное перетравливание поверхности, водородная хрупкость. Для устранения названных недостатков применяют добавки ингибиторов, которые, играя положительную роль, в отдель-. ных случаях приводят к иэменению свойсти основного металла, что может ухудшить качество гальванопокрытий [447]. Электрохимическое травление (анодная обработка) отличается высокой скоростью и позволяет избежать неравномерного удаления деформированного слоя благодаря пассивированию активных центров. [c.149]

    С увеличением скорости потока воды определяющим в разрушении поверхности сопел является механическое повреждение пассивированной оксидной пленки,вырыв и срез частичек металла с повехивости материала. ТакШ образом,наряду с химической стойкостью материалы.ис- [c.139]

    Скорость растворения твердого вещества, которая в общем может быть точно установлена только для кристаллографически определенной плоскости, в простейшем случае пропорциональна падению концентрации в покоящемся диффузионном слое, чаще всего 20—50 мц толщиной [55]. Так, совсем различные металлы, например 2п, С(1, Hg, Си или Ag, при одинаковых условиях одинаково быстро растворяются в растворе К1з [56] в других случаях, однако, каталитическое и замедляющее действие различно. Примером может служить ускоряемое ионами Н+ или ОН растворение АзаОз, СгСЬ в присутствии восстановителей или многочисленные явления пассивирования (Ре или Сг -Ь HNOз, А1 -Ь СНВгз и т. п.). Во многих случаях существенную роль играют коллоидно-химические явления. Растворение твердого вещества может сначала происходить с образованием коллоидной формы, как в случае воль- [c.260]

    Важно подчеркнуть, что при пассивировании подразумевается возникновение тонких 10 нм, или 100 A) окисных пленок с низкой растворимостью. Эти пленки достигают предельной толщины, которая неодинакова в различных условиях. Пассивность существует в определенном интервале потенциалов, ивсе пассивирующиеся электроды имеют поляризационные кривые, подобные изображенной на фиг. 55, с характерным резким, зависящим от потенциала падением плотности тока при установлении пассивности. Многие металлы реагируют со средой с образованием нерастворимых пленок непосредственно в процессе химической реакции, которая не зависит от потенциала, и этот эффект не следует смешивать с пассивностью. Свинец, например, устойчив к серной кислоте вследствие формирования на его поверхности малорастворимого сульфата, приостанавливающего дальнейшее разъедание. Эта реакция не зависит от потенциала, и поэтому анодная поляризационная кривая не показывает резкого уменьшения плотности тока. Следовательно, свинец не может считаться в рассматриваемой среде пассивным. [c.116]

    Рассмотрение потенциостатических кривых показывает, что кривые для железа, никеля и хрома имеют аналогичную форму и содержат четыре области растворения, характерных для пассивирующихся металлов активное состояние, переходная область от активного к пассивному состоянию, пассивная область и область перепассивации. Для молибдена [37, 38, 62, 63, 65] и вольфрама [63] удается установить только часть пассивной области и область перепассивации. Обусловлено это тем, что фкор рассматриваемых металлов находится Б начале области перепассивации. Поэтому исследовать полностью пассивную область и достичь активного состояния не представляется возможным, так как для поддержания потенциалов в указанных областях нужны плотности катодных токов, выходящие за пределы практически реализуемых плотностей. По-видимому, вследствие высокого сродства к кислороду, уже в условиях очень больших скоростей выделения водорода ( 0,1 aj M ) происходит адсорбционно-химическое взаимодействие молибдена и вольфрама с кислородом воды и их пассивирование. [c.25]

    Влияние внешней среды. Коррозионные процессы представляют собой сложную совокупность физико-химических явлений, исследование которых требует знания как внутренних факторов, зависящих от природы металла, так и характеристики агрессивно действующей среды, ее кислотности, наличия кислорода, присутствия ионов, которые могут затормозить или, наоборот, ускорить коррозию, и т. д. Природа внутренних факторов (в первую очередь возникновение электродного потенциала и его влияние на коррозионное поведение металла) была объяснена выше. К этому следует добавить способность некоторых металлов (алюминия, хрома, марганца и др.) образовывать на своей поверхности пленки различного химического состава, обычно окисные, обладающие защитными сйойствами. Это явление известно под названием пассивирования. Металлы (например, алюминий и хром), покрывающиеся пленками самопроизвольно, называют самонассивирующи-мися. В некоторых случаях работа гальванических элементов способствует образованию подобных пленок на поверхности анодов, что приводит, естественно, к торможению электрохимического процесса. [c.184]

    При наложении на электроды небольшого напряжения появляется возможность осаждения металла на наиболее активных местах катода. Однако при увеличении напряжения металл выделяется и на менее активных участках катода. Следовательно, повышение потенциала катода способствует преодолению его пассивности. Поляризацию, которая обусловлена возникновением затруднения электродной реакции в случае восстановления ионов металла на поверхности, покрытой адсорбированными чужеродными частицами (окиси, гидроокиси, органические поверхностноактивные вещества и другие чужеродные молекулы), предложено назвать нассивационной в отличие от химической поляризации, которая связана с замедленностью стадии перехода иона из раствора в кристаллическую решетку [83]. Ваграмян [152] считает, что при выделении металла на пассивированной поверхности ч...разряд ионов возможен либо после десорбции чужеродных адсорбированных частиц, либо в результате проникновения ионов металла через пленку, либо при выделении металла на чужеродных частицах. Поэтому в величину перенапряжения при разряде ионов металлов в первом случае входит также работа десорбции посторонних частиц, во втором — работа преодоления энергетического барьера через пленку, а в третьем — работа образования нового зародыша . [c.26]


Смотреть страницы где упоминается термин Пассивирование химическое металлов: [c.375]    [c.283]    [c.190]    [c.444]    [c.85]    [c.107]   
Кислородная коррозия оборудования химических производств (1985) -- [ c.122 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы химические

Пассивирование



© 2025 chem21.info Реклама на сайте