Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Платина, поглощение

    Метод основан на сжигании анализируемой пробы в диоксановом пламени в присутствии платины, поглощении продуктов сгорания смесью растворов карбоната натрия и перекиси водорода и колориметрическом определении образовавшегося иона хлора по реакции взаимодействия с роданидом ртути в присутствии ионов железа(П1). Происходящие при этом реакции могут быть выражены следующими уравнениями  [c.60]


    На чистых образцах массивной поликристаллической платины поглощение хемосорбированного водорода, измеренное при [c.321]

    Природа взаимодействия кислорода с платиной. Поглощение кислорода платиной в области температур. [c.134]

    Определение химического состава. Массовую долю платины определяют по методу, основанному на взаимодействии платинохлористоводородной кислоты с хлоридом олова с образованием комплекса, имеющего характерное поглощение света отклонение от среднего арифметического трех параллельных определений не более 0,006% абс. [c.77]

    Для измерения числа поглощенных квантов применяют селеновый фотоэлемент (рис. ХХП. 1). Он представляет собой пластинку из стали, на которую путем возгонки в вакууме нанесены последовательно слой селена ( 0,1 мм) и полупрозрачный слой золота или платины. Пластинка помещена в эбонитовую оправу с двумя [c.270]

    Отличительная особенность палладия — способность поглощать значительные количества водорода. Так, 1 объем Рд при 80Х может поглотить до 900 объемов Нг- Палладий и никель — хорошие катализаторы гидрирования, восстановления водородом. В присутствии Рс1 водород (даже на холоду и в темноте) легко восстанавливает галогены, переводит 50, в Н,8, СЮ в С1, и т. д. Для платины наиболее характерно поглощение кислорода. Большое значение платина имеет как катализатор окисления кислородом аммиака (в производстве ННОз), водорода (для очистки О, от примеси И,) и в других процессах каталитического окисления. [c.646]

Рис. 58. Спектры некоторых соединений платины, характеризующихся отсутствием максимума поглощения в области первой полосы поглощения Рис. 58. <a href="/info/1613122">Спектры некоторых соединений</a> платины, характеризующихся отсутствием <a href="/info/190316">максимума поглощения</a> в <a href="/info/1679427">области первой</a> полосы поглощения
    А. В. Бабаевой было показано, что спектры изомеров ряда комплексных соединений двухвалентной платины отличаются лишь величиной оптической плотности, а положение полос поглощения растворов цис- и транс-изомеров почти совпадает (рис. 67). [c.318]

    Влияние валентного состояния центрального иона. Повышение валентного состояния центрального иона способствует возникновению ковалентных связей. Поэтому по мере повышения заряда центрального иона полосы поглощения, соответствующие маятниковым и симметричным деформационным колебаниям координированной группы, смещаются в область более высоких волновых чисел. В табл. 90 сравниваются частоты валентных, деформационных и маятниковых колебаний NH3 в аммиачных комплексах двух- и четырехвалентной платины, а также двух- и трехвалентного кобальта. Из таблицы видно, что ковалентным соединениям, содержащим металл ё более высокой [c.323]


    Все платиновые металлы поглощают водород. Палладий по отношению к водороду занимает особое место, 1 объем Рс1 поглощает до 900 объемов Н- . При поглощении водорода палладий теряет блеск, увеличивается его хрупкость, изменяется сопротивление, уменьшается магнитная восприимчивость. Один объем платины при 450 °С поглощает - 70 объемов Но. Меньше всего поглощает водорода осмий. [c.403]

    Тантал с пирогаллолом образуют комплекс в среде 4 и. раствора НС1 и 0,0175 М оксалата. Молярный коэффициент поглощения комплекса е в этих условиях составляет 4775. Оптическая плотность растворов пропорциональна концентрациям тантала до 40 мкг мл. Определению мешают молибден (VI), вольфрам (VI), уран (VI), олово (IV). Влияние ниобия, титана, циркония, хрома, ванадия (V), висмута, меди не. существенно, и его можно учесть введением их в холостой раствор. Определению тантала мешает фторид, платина, поэтому сплавление анализируемых проб нельзя проводить в платиновой посуде. [c.386]

    Так как узнать действительную разность потенциалов между металлом и раствором не удается, то вместо этого измеряют относительные электродные потенциалы, пользуясь так называемыми электродами сравнения. Основным электродом сравнения является водородный (рис. 51). Он представляет собой сосуд, в котором укрепленная сверху платиновая проволочка погружена в раствор серной кислоты. Водород, поступающий в сосуд из какого-нибудь прибора, частично растворяется в платине и адсорбируется на ней. На этом и основано устройство водородного электрода, так как водород, поглощенный платиной, ведет себя при соприкосновении с раствором как металл, образуя ионы Н в растворе  [c.154]

    Платиновые металлы соединений с водородом не дают. В тонкораздробленном состоянии у них очень сильно выражена способность сорбировать (поглощать) водород. Растворы водорода изучены только для платины и палладия. Последний поглощает очень большие объемы водорода, в связи с чем происходит значительное уменьшение плотности. Так, например, у палладия, поглотившего 936 объемов водорода на I объем металла, плотность снижается с 12,38 до 11,79 г см . Поглощение водорода и других газов палладием используют в вакуумной технике (геттер). С увеличением объема палладия за счет поглощенного водорода ухудшаются его механические свойства. Поглощенный палладием водород удаляется в вакууме при нагреве до 200° С. [c.144]

    На рнс. 59 показаны инфракрасные спектры поглощения оксида углерода, адсорбированного на четырех различных металлах. Молекула газообразного оксида углерода почти неполярна и имеет лишь слабое поглощение при 2143 см . Кетоны поглощают излучение в области 1900...1600 см . Как видно из рис. 59, при адсорбции оксида углерода на меди частота колебаний связи изменяется незначительно, а при адсорбции на палладии частота становится почти такой же, как частота колебаний карбонильной группы в кетонах. Полученные данные свидетельствуют, что молекула оксида углерода адсорби-р1 тся на атоме меди нли платины в виде М—С=0, а с никелем или палладием [c.146]

    Увеличение концентрации вещества на границе раздела фаз называется адсорбцией. Если поглощаемое вещество диффундирует в объем поглотителя и распределяется по объему, то это явление называется абсорбцией. Примером абсорбции может служить поглощение водорода платиной и палладием. При обычной температуре 1 об. ч. палладия может растворить более 700 об. ч. водорода. При на  [c.156]

    Для большинства платиновых элементов характерна способность поглош,ать различные газы, в частности водород. Меньше других поглощает осмий (в компактном состоянии он практически ые поглощает водород). Очень хорошо поглощает палладий один его объем способен при обычной температуре поглотить более 700 объемов водорода. При этом палладий заметно вспучивается, становится хрупким и покрывается трещинами. Поглощенный водород может быть полностью выделен из палладия путем нагревания в вакууме до 100°С. Платина поглощает водород лишь при повышенных температурах и в меньших количествах, чем палладий. Напротив, кислород растворяется в платине лучше, чем в палладии при 450 °С один объем платины может поглотить около 70 объемов кислорода, а один объем палладия — [c.497]

    Свойства кислорода в отношении адсорбции на дисперсных металлах, как показывают следующие примеры, менее определенны. Полторак и Воронин [63] нашли, что на катализаторе Pt/Si02 поглощение кислорода при 670 К и давлении 133 Па (1 мм рт. ст.) хорошо согласуется с поглощением водорода при 77 К. Однако по данньш Грубера [33] для катализатора Pt/AbOs, в котором частицы металла настолько малы, что почти каждый атом являлся поверхностным (дисперсность Dpt 0,8), поглощение кислорода примерно равно поглощению водорода, в то время как поглощение кислорода на более крупных частицах (с Dpt 0,5) приблизительно вдвое больше, чем водорода. Эти результаты были объяснены отсутствием процесса внедрения кислорода на достаточно малых частицах металла. Исследование адсорбции кислорода на катализаторах Pt/Si02 и Pt/A Os при комнатной температуре [64, 65] показало, что, если дисперсность платины равна примерно единице, кислорода адсорбируется примерно вдвое меньше, чем водорода, если же Dpt<0,5, количества адсорбированных кислорода и водорода сравнимы, хотя количество поглощенного кислорода, как правило, непостоянно и относительно плохо воспроизводится. Такая тенденция, по-видимому, свойственна и катализаторам платина—цеолит [66]. Вероятно, в случае весьма небольших частиц платины поглощение кислорода относительно меньше, что также может быть следствием повышенного сродства к электрону этих частиц, затрудняющего перенос электрона к адсорбированному кислороду. [c.313]


    Изостерические теплоты сорбции, определенные из изотерм, снятых при 440 и 500°С, и равные 184— 205 кДж/моль, соответствуют прочной хемосорбции кислорода на платине [И]. Таким образом, наблюдаемое при низких давлениях (Ро. <1 Topp) поглощение кислорода платиной в интервале температур —78н-500°С является хемосорбцией, не осложненной в заметной степени процессами объемного окисления и внедрения кислорода в решетку платины. В пользу этого свидетельствует также соответствие между величинами максимального поглощения кислорода и водорода на изученных образцах. Соответствие для всех изученных образцов Pt вида кинетических кривых, изобар, изотерм, значений энергий активации, теплот сорбции и предельных количеств поглощенного водорода и кислорода дает основание полагать, что и для высокодисперснои платины поглощение кислорода в рассматриваемых условиях является хемосорбцией. [c.135]

    Таким образом, в присутствии платиновой черни одновременно, но с различными скоростями, проходит образование изопропилциклопропана (I) и 2-метилпентана (II). В первом случае имеет место присоединение водорода лишь в поло/кении 1,2, и сопряжения трехчленного кольца с двойной связью не наблюдается во втором случае, как и в случае гидрирования изопропенилциклопропана в присутствии палладиевой черни, проявляется сопряжение трехчленного кольца и двойной связи, и водород присоединяется в положения 1,4 и 3,4. Если учесть количества водорода, присоединенные в обеих реакциях, станет понятным, почему в присутствии платины поглощение его прекращается после присоединения 1,3 молекулы. [c.110]

    По данным ИКч пектроскопии, при введении щелочных металлов в состав алюмоплатинового катализатора наблюдается уменьщение частоты полосы поглощения адсорбированного оксида углерода, что свидетельствует об увеличении электронной плотности на платине и об увеличении прочности адсорбции оксида углерода. [c.48]

    Рениформинг представляет собой регенеративный процесс каталитического риформинга со сменно-циклическим режимом работы реакторов на стационарном слое биметаллического катализатора. Катализатор процесса рениформинг содержит 0,3 % (мае.) платины и 0,3 % (мае.) рения. Технологическая аппаратура процесса (рис. 11) включает абсорбер для поглощения сероводорода, три реактора, сепаратор и стабилизатор. [c.39]

    По данным [1821, температура восстановления катализатора Pt/-y-AI.,0,T зависит от температуры его прокаливания. Так, максимальная скорость восстановления (пик на термограмме ТПВ) наблюдается при 150 С, если катализатор прокален при 300 X или при более низких температурах. Однако температура восстановления повышается до 275 "С в случае, когда прокаливание проводят при. 500 550 "С. Аналогичный эффект температуры прокаливания наблюдается н для катализатора Re/y-Al Oa. С повышением температуры прокаливания от 300 до 500—550 °С температура максимальной скорости восстановления возрастает от 350 до 550 °С. Подобный результат можно объяснить тем, что высокие температуры прокаливания Способствуют более полному взаимодействию металлических оксидов с носителем —Al Og. Исходя нз количества водорода, поглощенного при восста ювленни, степень окисления платины и рения прокаленных катализаторах соответственно равна 4 +. 1 7+ (табл. 2.6). Платина н рений восстанавливаются до металли- ческого состояния. [c.82]

    При равномерной подаче яда и полном его поглощении катализатором кривые й = / (т) и Л = /(т) подобны кривым к = f g) и = (ё)- На отравление влияет та же- ремдв а тура, давление и метод изготовления контактов. Повышение температурь , как пра- вило, снижает действие ядов, что отчетливо видно на рис. 19. чУ Иногда контактный яд в очень малых количествах активирует катализатор. Так, анион АзОз в небольших дозах увеличивает активность платины по отношению к гидрированию коричной кислоты, а в больших количествах отравляет ее (рис. 20) [48]. [c.65]

    Наряду с этим С. Сивасанкер [112] показал, что на окиси алюминия с большой кислотностью платина диспергирована лучше, причем главную роль играет собственная кислотность АЬОз, а не способ ее приготовления. Причиной повышенной дисперсности металла на более кислых носителях, по мнению автора, может быть их способность лучше поглощать платинохлористоводородную кислоту при приготовлении алюмоплатиновых катализаторов. Так, еще в 1970 г. Зайдманом и др. было показано, что поглощение пропитывающего состава является важным фактором, определяющим дисперсность платины на окиси алюминия. [c.151]

    Раствор 25 г 3-ацетплпиридпна в 150 мл дистиллированной воды встряхивают с 0,5 г платины из окиси платины (катализатор Адамса) в атмосфере водорода до прекращения поглощения водорода, которого расходуется около 1 моля. Отфильтровывают катализатор и раствор перегоняют. Получают 21,5 г 3-пнридилметилкарбинола с т. кип. 123—125 (5 мм) выход составляет 85 i) от теорет. [322]. [c.252]

    Мэкстед и Хэссид [271] и позже Кван [2] нашли, что теплота сорбции водорода на платине не зависит от количества поглощенного газа. Вполне возможно, что при тех температурах, при которых проводились опыты этих исследователей, водород проникает в поверхностные слои металла. [c.147]

    Водородный электрод представляет собой платиновую пластинку, покрытую тонким слоем рыхлой пористой платины (для увеличения поверхности электрода) и опущенную в 2 н. водный раствор серной кислоты (с активностью ионов Н+ равной единице) (рис. 141). Через раствор серной кислоты пропускают водород под атмосферным давлением. Часть поглощенного платиной водорода переходит в aтo tapнoe состояние, поэтому в поверхностном слое платииы устанавливается равновесие Н, а на границе платины и раствора серной кислоты равновесие Н(г) ГН+ (р)г1-е-, т. е. суммарно  [c.249]

    В результате этих процессов на границе между платиной и раствором ионов водорода образуется двойной электрический слой, обусловливающий скачок потенциала. Величина этого потенциала при данной температуре зависит от активности водородных ионов в растворе и от количества поглощенного платиной газообразного водорода, которое пропорциопально его давлению  [c.236]

    А. В. Бабаевой, изучавшей спектры поглощения соединений двухвалентной платины, содержавших во внутренней сфере молекулы различных аминов (МНз, ЫНзОН), был сделан вывод (рис. 63) о незначительном влиянии природы амина на характер абсорбционного спектра. [c.314]

    Влияние изомерии комплекса на характер спектра поглощения. В большинстве случаев спектры поглощения соединений цис-строения в инфракрасной области более сложные, чем спектры поглощения более симметричных транс-изомеров. Например, в инфракрасных спектрах кристаллических ис-(ЫНзЫ02)2(S N)aPt обнаружено расщепление частот внутренних деформационных колебаний нитрогруппы по сравнению с гране-(ЫНз)2(NOa)2(S N)2Pt. Подобные соотношения наблюдаются у многих диамминосоединений двух- и четырехвалентной платины (табл. 92). Однако в ряде случаев расщепления полос не наблюдается. Это имеет место, например, у изомеров [СоЕп2(Ы02)2]Х. Причины отсутствия расщепления в каждом отдельном случае требуют детального исследования. [c.324]

    По-видимому, Б этом ряду слева направо происходит ослабление ковалентного характера связи Р1—ЫНз под влиянием транс-ая-денда X на ЫНзР1—X координате. Этот ряд не полностью совпадает с рядом трансвлияния аддендов в соединениях двухвалентной платины это обусловлено тем, что исследование трансвлияния аддендов проводилось в водном растворе, а изучение спектров поглощения — у твердых веществ. Присутствие же молекул растворителя существенно влияет на состояние комплекса. [c.332]

    Наряду с рассмотренными выше силами в адсорбции большую роль могут играть и силы химического средства, под действием которых между молекулами адсорбата и поверхностью образуются химические связи. Такой процесс называется химической адсорбцией или хемосорбцией. Он аналогичен химической реакции и поэтому характеризуется высокой специфичностью (избирательностью), т. е. для определенного адсорбата количество хемосорбиро-ванного вещества очень чувствительно к химической природе адсорбента (хемосорбента). Например, оксид углерода СО удерживается на поверхности меди и платины сравнительно слабо, о чем можно судить по незначительному сдвигу частоты колебаний молекулы СО в инфракрасном спектре поглощения. В случае ни- [c.317]

    П а л л а д и й — самый легкий из платиновых металлов, наиболее мягкий и ковкий. В химическом отношении он менее инертен, чем платина и другие платиновые металлы. При нагревании палладий окисляется кислородом Рё + %02 = Рс10. Он растворяется в азотной и горячей концентрированной серной кислотах. С царской водкой палладий реагирует более энергично, чем платина. Характерные особенности палладия — устойчивость в степени окисления +2, способность поглощать водород (до 800 объемов на 1 объем Рс1). При поглощении водорода объем металла заметно увеличивается, он становится более хрупким и ломким. Палладий широко используется как катализатор целого ряда химических реакций (его наносят на фарфор, асбест или другие носители). Сплавы палладия применяются в электротехнике, радиотехнике и автоматике как электроэмиссионные и другие материалы. Так, сплавы палладия с серебром идут для изготовления электрических контактов сплавы палладия с золотом, платиной и родием используются в термопарах и терморегуляторах. [c.299]

    Ввиду трудностей, возникающих при работе с водными системами, возрастает привлекательность других материалов, например разбавленного этанола, получаемого при низкосорт-тм сбраживании. Были получены хорошие выходы На и СНзСНО с бензофеноном в качестве сенсибилизатора и высокоактивной коллоидной платиной в качестве катализатора. Спектр поглощения бензофенона мало соответствует спектру солнечного света (он преимущественно поглощает в УФ-области), но возбужденный сенсибилизатор так быстро реагирует [c.271]


Смотреть страницы где упоминается термин Платина, поглощение: [c.51]    [c.220]    [c.328]    [c.51]    [c.814]    [c.84]    [c.104]    [c.27]    [c.50]    [c.157]    [c.147]    [c.317]    [c.9]    [c.158]    [c.333]    [c.547]   
Химия коллоидных и аморфных веществ (1948) -- [ c.99 , c.100 ]




ПОИСК







© 2025 chem21.info Реклама на сайте