Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Агрегация дальняя

    Различают две стадии коагуляции скрытую и явную. Первая стадия в коллоидных системах заканчивается, как правило, очень быстро. На этой стадии частички хотя и укрупняются, но осадок еще не образуется. В некоторых случаях заметны внешние изменения меняется окраска золя, появляется муть и т. п. Вторая стадия (явная коагуляция) наступает в результате дальнейшей агрегации частичек, которая завершается через определенное время полным разделением системы на две фазы и выпадением части или всего коллоидного вещества в осадок. Такой осадок, получивший наименование коагель, или коагулят, имеет определенную структуру. [c.80]


    При концентрациях ПЛВ а водном растворе, несколько превышающих ККМ, согласно представлениям Гартли образуются сферические мицеллы (см. рис. VI. 5). Эти мицеллы обычно называют мицеллами Гартли. Внутренняя часть мицелл Гартли состоит из переплетающихся углеводородных радикалов, полярные группы молекул ПАВ обращены в водную фазу. Диаметр таких мицелл равен удвоенной длине молекул ПАВ. Число молекул в мицелле быстро растет в пределах узкого интервала концентраций, а при дальнейшем увеличении концентрации практически не изменяется — увеличивается чи vTO мицелл. Сферические мицеллы могут содержать от 20 до 100 молекул. Например, по данным светорассеяния, мицелла додецилсульфата натрия состоит в среднем из 73 молекул. Число агрегации увеличивается при добавлении в раствор ПАВ электролитов. Размер мицелл иоиогенных ПАВ постепенно уменьшается с иовышением температуры. Размер же мицелл неионогенных ПАВ возрастает с температурой. [c.298]

    Начальную стадию коагуляции, когда ее скорость увеличивается пропорционально повышению концентрации электролита, называют медленной коагуляцией. В дальнейшем процесс агрегации достигает максимальной скорости, не зависящей от концентрации добавленного электролита. Эту стадию называют быстрой коагуляцией. Коагуляция сопровождается помутнением золя, затем дисперсная фаза выпадает в осадок (коагулят) или образуется гель. [c.199]

    При необходимости сохранить высокую степень дисперсности твердых частиц в получаемом продукте образование прочных агрегатов их недопустимо. В таком случае требуется временная агрегация частиц с образованием непрочных агрегатов, которые в. дальнейшем можно разрушить. Это достигается добавлением к суспензии небольшого количества электролита, например нитрата алюминия, снижающего дзета-потенциал до порога агрегации, и соответствующего количества полиэлектролита, например полиакриламида, адсорбирующегося на поверхности твердых частиц и объединяющего их в достаточно непрочные агрегаты. [c.195]

    Процесс кристаллизации парафина, при котором вместе с образованием кристаллов протекает также и их агрегация, будем именовать в дальнейшем агрегатной кристаллизацией . [c.74]

    Интересен обнаруженный факт резкого изменения устойчивости системы при дальнейшем небольшом (от 1,8 до 2-10 М) повышении концентрации КС1. При этом значительно увеличивается скорость коагуляции и образуются более крупные агрегаты. Уже через 1 ч после начала наблюдения степень агрегации системы составляет 1,9, через 3 ч — 2,7, а через 5 ч — 3,6. При дальнейшем повышении концентрации КС1 до 5-10 М полученные кривые практически полностью совпадают с зависимостью, найденной для k i = 2-10 М. Резкое изменение поведения системы при данной концентрации КС1 позволяет считать эту концентрацию в определенном смысле пороговой. Вполне вероятно, что именно при этой концентрации (при pH = 6) происходят резкие структурные изменения в ГС, приводящие к частичному или полному их разрушению. Резкое [c.183]


    Наблюдения за устойчивостью и коагуляцией дисперсии алмаза в щелочной области (pH = 9) проводились непрерывно в течение 6—7 ч и далее через 24 ч. Исходная дисперсия алмаза при pH = 9 без добавления K I и при его концентрации 5-10 моль/л является агрегативно устойчивой. Из расчета энергии взаимодействия по теории ДЛФО следует, что устойчивость дисперсии алмаза при концентрации K l lO М обусловлена наличием высокого энергетического барьера ( 160 кТ) и очень малой глубиной дальнего минимума. При концентрации КС1 I-IO моль/л в системе уже наблюдается заметная агрегация степень агрегации составляет 2,7. При дальнейшем росте концентрации КС1 увеличивается скорость и степень агрегации, достигнутая к определенному времени наблюдения. Это связано с постепенным уменьшением вклада ионно-электростатической составляющей и реализацией более глубокой потенциальной ямы . Обратимый характер агрегации в случае средних концентраций (10 , 10 моль/л), возможно, связан с влиянием структурной составляющей энергии взаимодействия, что приводит к ограниченности глубины ямы . Однако в целом агрегативная устойчивость и коагуляция дисперсии алмаза при pH = 9, в отличие от рассмотренных выше случаев, может быть объяснена теорией ДЛФО в ее классическом варианте. [c.184]

    Дальнейшее понижение температуры приводит к агрегации кристаллов с образованием пространственной структуры, связывающей жидкую фазу, и вязкость системы возрастает. Однако добавление следующей порции растворителя в количестве, не превышающем половины объема сырья, приводит к разделению системы на отдельные агрегаты кристаллов. В табл. 20 дана схема разбавления остаточного рафината растворителем, из которой следует, что скорость фильтрования суспензий твердых углеводородов зависит от их структурной вязкости, которая, в свою очередь, определяется способом подачи растворителя. При депарафинизации остаточного рафината автор предлагает использовать схему опыта [c.151]

    Рассмотрим кинетику агрегации (коагуляции). Слипание двух частиц может произойти только при их столкновении. Число столкновений между частицами имеет основное значение для скорости агрегации. Однако не каждое столкновение может привести к слипанию. Эффективность столкновений частиц при соударении определяется свойствами их поверхностей и окружающего их раствора. Результаты исследования зависимости скорости агрегации (коагуляции) от концентрации электролита с показывают, что если с мало, то скорость агрегации равна нулю, далее в узком интервале концентраций наблюдается быстрый рост скорости агрегации до некоторой величины, не изменяющейся с дальнейшим увеличением с [27]. [c.87]

    Пачки представляют собой роевые образования, состоящие из нескольких десятков плотно и преимущественно параллельно уложенных макромолекул. Наличие пачек характерно как для жесткоцепных аморфных, так и для кристаллических состояний полимеров (рис. 1.2). Более гибкие макромолекулы легко сворачиваются в глобулы (рис. 1.3). В результате дальнейшей агрегации [c.19]

    Очень интересным представителем рассматриваемых. коллоидных систем является встречающаяся в природе голубая каменная соль. Причиной голубой окраски каменной соли является присутствие в кристаллах хлорида натрия ничтожного количества (0,0001 %) коллоидно диспергированного металлического натрия. Зидентопф еще в 1905 г. получил голубую каменную соль искусственно, нагревая кристаллы хлорида натрия в парах натрия. Сначала соль приобретала желтую окраску, соответствующую высокой степени дисперсности частиц натрия. Однако при дальнейших последовательных нагреваниях и охлаждениях происходила постепенная агрегация частиц натрия и окраска кристаллов становилась голубой. Опыты, проведенные позднее, показали, что искусственная голубая соль может быть получена и при действии на кристаллы хлорида натрия рентгеновских лучей и радиоактивного излучения. [c.396]

    В зависимости от мест, занимаемых атомами в периодическои системе элементов Д. И. Менделеева, их физико-химические свойства закономерно изменяются. Наиболее интересна область температур от О К до нескольких тысяч градусов. В этой области под действием сил химических связей и молекулярных сил происходит дальнейшая агрегация вещества, образуются устойчивые группы атомов — молекулы и кристаллы. Совокупность атомов переходит в конденсированное состояние, возникает многообразный мир окружающих нас простых и сложных газообразных, жидких и твердых тел, включающий в себя и биологические объекты. Вблизи абсолютного нуля температуры наиболее ярко проявляются квантовые свойства конденсированных систем. [c.8]

    Наконец, в растворителях с еще более низкой диэлектрической проницаемостью наблюдается образование коллоидных частиц и степень ассоциации достигает нескольких сот или даже тысяч ионов в частице. Так, при получении хлористого натрия в бензоле из хлористого этила и этилата натрия хлористый натрий не выпадает в осадок, а образует коллоидный раствор хлористого натрия. С рассмотренной точки зрения это является результатом дальнейшей агрегации ионов с образованием коллоидных частиц, т. е. с образованием элементов твердой кристаллической решетки, несущих заряд на поверхности. Таким образом, постепенная ассоциация ионов в растворах в сложные агрегаты объясняется электростатическим кулоновским взаимодействием. [c.123]


    Каргин и Слонимский считают возможным также и другой тип агрегации в полимерах, когда отдельные макромолекулы скручиваются в глобулы. Такие мономолекулярные глобулы могут агрегироваться в сложные структурные образования, не утрачивая своей индивидуальности. Глобулы при дальнейшей [c.191]

    Получили дальнейшее развитие исследования в области молекуляр-но-статистической теории других типов флюидных систем. Разработана модель для описания свойств водно-органических растворов солей, изучена растворимость кислых газов (НгЗ, СО2) в сложных растворителях (солевых растворах аминов), изучались системы полимер - мономер - растворитель. Для названных типов систем получены экспериментальные данные, подтверждающие теоретические выводы. Продолжались исследования нефтегазовых систем, разработана модель агрегации асфальтенов, определены некоторые факторы, влияющие на их осаждение. [c.110]

    Следует заметить, что взаимодействие частиц на больших расстояниях, характеризуемое наличием на потенциальной кривой неглубокого отрицательного минимума, до сих пор не имеет специального названия. Ученые называют этО взаимодействие по разному дальней коагуляцией, коагуляцией во вторичном минимуме, дальней агрегацией, флокуляцией. В дальнейшем мы будем пользоваться всеми этими терминами за исключением флокуляции, поскольку термин флокуляция имеет чисто описательный характер (образование хлопьев, фло-кул) и не зависит от того, происходит ли она в результате истинной коагуляции или дальней агрегации. Термином коагуляция будем обозначать все виды агрегации частиц, начиная от коалесценции и непосредственного слипания частиц и кончая дальней агрегацией. Наконец, под истинной коагуляцией будем-понимать непосредственный физический контакт между частицами. [c.279]

    Некоторые из этих путей включают реакции, сопровождающиеся выделением энергии, запасаемой в виде АТР, большая часть которой используется в дальнейшем для энергетического обеспечения восстановительных процессов биосинтеза. В ходе этих восстановительных процессов образуются менее реакционноспособные гидрофобные липидные групировки и боковые цепи аминокислот, которые так необходимы для сборки нерастворимых внутриклеточных структур. Структурная организация природных олигомерных белков, мембран, микротрубочек и волокон является результатом агрегации, обусловленной сочетанием гидрофобных взаимодействий, электростатических сил и водородных связей. Главный результат метаболизма состоит в синтезе сложных молекул, которые весьма специфическим образом самопроизвольно взаимодействуют друг с другом, образуя требуемые для организма структуры— богатые липидами цитоплазматические мембраны, регулирующие вместе с внедренными в них белками поступление веществ в клетки. [c.502]

    При прибавлении к системе индифферентного электролита происходит сжатие диффузной части двойного электрического слоя и толщина ионных атмосфер уменьшается. Одновременно также в результате сжатия ионного слоя увеличивается глубина вторичного потенциального минимума, что приводит к возрастанию вероятности дальней агрегации. Изменение формы потенциальных кривых парного взаимодействия частиц при увеличении содержания индифферентных электролитов в системе показано на рис. IX, 13. [c.293]

    Для подтверждения развиваемых представлений о значительной роли ГС воды в агрегативной устойчивости дисперсий гидрофильных частиц было исследовано влияние температуры на коагуляцию дисперсии алмаза. На основании литературных данных [30, 87, 477, 517] можно было ожидать, что с ростом температуры должен уменьшаться вклад положительной структурной составляющей в общую энергию взаимодействия частиц. Это, в свою очередь, должно снижать агрегативную устойчивость гидрофильных или гидрофилизированных дисперсий. Подтверждающее это положение экспериментальные данные, полученные для дисперсии алмаза в 5-10 М в растворе Ь1С1 при рН = 2 в интервале температур 20—50 °С приведены на рис. 10.9. Незначительная степень агрегации, наблюдаемая при 20°С (т=1,5), заметно увеличивается при возрастании температуры до 40 °С (т=1,8). Дальнейший рост температуры (50 °С) приводит к изменению самого характера процесса агрегации значительно увеличивается скорость коагуляции, образуются более крупные агрегаты, отсутствует выход на плато, наблюдавшийся при более низких температурах. При меньших концентрациях электролита (1-10 М Ь1С1) влияние повышения температуры становится менее заметным при 50°С в дисперсии алмаза наблюдается лишь незначительная степень агрегации. [c.187]

    Для того чтобы рассчитать число столкновений частиц, необходимо принять, что все оии приводят к агрегации. Однако это возможно только тогда, когда энергия соударений частиц превышает среднюю энергию, необходимую для их слипания A , называемую потенциальным барьером. Эффективность соударений пропорциональна фактору Больцмана. Проводя дальнейшую ана-лоппо с теорией активных столкновении, необходимо учесть стери-чсский множитель Р, учитывающий благоприятные пространствен ные расположеиня частиц при столкновении, их форму, размеры, [c.280]

    При увеличении концентрации ПАВ мицелллярный раствор проходит ряд равновесных состояний, характеризуемых определенным числом агрегации, размером и формой мицелл. При достижении определенной концентрации сферические мицеллы начинают взаимодействовать между собой, что способствует их деформации. Мицеллы стремятся принять цилиндрическую, дискообразную, палочкообразную, пластинчатую форму (рис. VI. 5). Существование пластинчатых мицелл доказано Мак-Беном. При концентрациях примерно в 10—50 раз больше ККМ мицеллярная структура многих ПАВ резко изменяется. Молекулы принимают цепочечную ориентацию и вместе с молекулами растворителя способны образовывать жидкокристаллическую структуру. Последней стадией агрегации ири дальнейшем удалении воды из системы является образование гелеобразной структуры и твердого кристаллического ПАВ. [c.298]

    Концентрационная коагуляция происходит при увеличении содержания индифферентного электролита в дис[1ерсной системе. Как уже отмечалос1з ири рассмотрении двойного электрического слоя, с ростом концентрацни электролита в дисперсионной среде происходит сжатие диффузной части ДЭС и снижение величины потенциального барьера. Одновременно в результате сжатия диффузного слоя увеличивается также глубина второго минимума, что приводит к возрастанию вероятности дальней агрегации. Порог концентрационной коагуляции зависит от валентности г и в случае шдрофобных поверхностей для одно-, двух- и трехзарядных противоионов относится как 1 64 729. [c.73]

    При достижении определенной концентрации двойных частиц их распады уравновешивает процесс слипания одиночных частиц, вследствие чего численная концентрация золя становится постоянной. В некоторый момент к одной из двойных частиц прилипает третья частица, образуя тройнук> частицу. Энергия связи каждой из трех частиц образовавшегося агрегата в два раза больше, чем у частицы, входящей в двойную частицу. Поэтому такая тройная частица имеет мало шансов распасться. Одновременно происходит дальнейший рост агрегатов за счет присоединения новых частиц. И действительно, визуальные наблюдения под микроскопом показали, что в некоторый момент среди сравнительно слабо видимых частиц (по вспышкам в поле зрения поточного ультрамикроскопа) появляются все более яркие и коагуляция все более ускоряется. Этим объясняется форма кривых с перегибом. При более высоких концентрациях электролита вследствие снижения энергетического барьера и углубления потенциальной ямы горизонтальные участки графика укорачиваются и, наконец, исчезают, но 5-образная форма кривых сохраняется. Таким образом, при изучении коагуляции необходимо учитывать не только процессы агрегации, но и распада агрегатов. [c.268]

    Следует иметь в виду, что адсорбционные слои, даже при отсутствии взаимодействия с растворителем при Д О, представляют собой стерический барьер, препятствующий сближению частиц на достаточно малые расстояния, при которых существенную роль начинают играть силы межмолекулярного притяжения. Конечно, эффективная стерическая стабилизация осуществляется лишь тогда, когда адсорбционные слои насыщены, а образующие их молекулы не способны десорбироваться при соударениях частиц. Для таких стерически стабилизованных систем невозможна коагуляция с непосредственным контактом частиц, а возможна лишь дальняя агрегация. [c.412]

    Сущность этих работ заключается в следующем. Обычно принимают, что прост р анственная коагу л я ци о а я сетка возникает в результате слипания коллоидных части чек""в первичные агрегаты, которые при дальнейшем слипании друг с другом образуют сложные структуры во в СШ 5бъемГ суспензии. "Возможна и сплошная агрегация, наличие которой при желатинировании достаточно концентрированных золей предполагал А. И.Рабинерсон. Однако он не объяснял желатинирование золей малой концентрацией при помощи указанных процессов агрегации, в этом случае он предполагал сетку из частичек, расположенных на далеком друг от друга расстоянии. [c.95]

    Нарушение агрегативной устойчивости коллоидной системы в сторону укрупнения частиц за счет их слипания под влиянием молекулярных сил притяжения называется коагцЛяиией. Различают две стадии коагуляции скрытую и явную. Первая в коллоидных системах заканчивается, как правило, быстро. На этой стадии частицы хотя и укрупняются, но осадок еше не образуется. В некоторых случаях замечаются внешние изменения меняется окраска золя, появляется муть и т. п. Вторая стадия (явная коагуляция) наступает в результате дальнейшей агрегации частиц, которая завершается за определенное время полным разделением системы на две фазы и выпадением части или всего коллоидного вещества в осадок. Такой осадок получил наименование — коагель (стр. 107), или коагулят, имеющий определенную структуру. [c.112]

    Условия образования осадка. Осадок МА образуется, когда значение ионного произведения [М+][А ] превысит значение произведения растворимости ПРма (см, разд. 3.4), т. е, когда возникнет местное пересыщение раствора, В этом месте появляется зародыш будущего кристалла (процесс зародышеобразования). С момента смешения растворов дЬ появления зародышей проходит определенное время, называемое индукционным периодом (от долей секунды до нескольких минут). При дальнейшем прибавлении осадителя более вероятным становится процесс роста кристаллов, а не дальнейшее образование зародышей. Зародыши соединяются в более крупные агрегаты, состоящие из десятков и сотен молекул (процесс агрегации). Эта стадия соответствует коллоидным системам. [c.142]

    Итак, изучение межатомных связей включает изучение ионной и ковалентной связи. Рассмотрим также некоторые проблемы, обусловленные существованием этих связей, такие, как геометрическая форма молекул. В дальнейшем будет видно, что между молекулами действуют силы, которые, хотя они и гораздо слабее межатомных, обеспечивают агрегацию молекул вещества в жидкое, а иногда и в твердое состояние за счет взаимопритяжения молекул. Эти силы называются межмолекулярными силами. [c.48]

    Зависимость удельных скоростей распада гидропероксида I -метилцик-логексила и расхода ингибитора (И7[К00Н](,) от начальной концентрации гидропероксида [39] показывает, что гомоассоциация гидропероксидов увеличивает их реакционную способность до определенного предела, выще которого дальнейшая агрегация в полимолекулярный ассоциат не приводит к большему снижению термостойкости гидропер-рксида. [c.236]

    Аналогичный метод использован и для изучения влияния концентрации дисперсной фазы лиофобных золей на их устойчивость, при различных концентрациях электролитов. Учет коллективного-взаимодействия коллоидных частиц позволяет объяснить существенные различия в закономерностях коагуляции электролитами разбавленных и нарушении устойчивости концентрированных лиофобных золей. В частности, было найдено, что при постоянной объемной концентрации дисперсной фазы устойчивость концентри рованных систем с увеличением размера частиц проходит через максимум. Этот вывод был экспериментально подтвержден Отте-вилем 111оу. Если же численная концентрация частиц остается неизменной, то устойчивость системы с увеличением размера частиц, снижается монотонно. Одновременно для больших сферических частиц и толстых пластинчатых частиц характерно наличие глубокого вторичного минимума на потенциальных кривых, вследствие чего процессы дальней агрегации должны быть особенно распространены в низкодисперсных системах. [c.296]

    Полимеризация в массе по периодич. схеме в две ступени. На первой В., содержащий 0,02-0,05% по массе инициатора, полимеризуют при интенсивном перемешивании до степени превращ. ок. 10%. Получают тонкую взвесь частиц ( зародьццей ) П. в мономере, к-рую переводят в реактор второй ступени сюда же вводят дополнит, кол-ва мономера и инициатора и продолжают полимеризацию при медленном перемешивании и заданной т-ре до степени превращения В. ок. 80%. На второй ступени происходит дальнейший рост частиц П. и их частичная агрегация (новых частиц не образуется). Получают пористые гранулы П. с размерами 100-300 мкм в зависимости от т-ры и скорости перемешивания на первой ступени. Незалолимеризовав-шийся В. удаляют, П. продувают азотом и просеивают. Порошок сыпуч и легко перерабатывается. Преимущества перед суспензионным способом отсутствие стадий приготовления водной фазы, выделения и сушки П., в результате уменьшаются капиталовложения, энергозатраты и расходы на обслуживание. Недостатки затруднены отвод тепла р-ции и борьба с коркообразованием иа стенках аппаратуры образующийся П. неоднороден по мол. массе, его термостойкость ниже, чем у П., полученного первым способом. [c.621]

    Увеличение концентрации ЦТАБ в системе после достижения изоэлектрического состояния (>2,5-10 М) приводит к росту положительных значений электрокинетического потенциала. Однако степень агрегации частиц (вплоть до концентрации ЦТАБ 10 М) вновь начинает расти, что может быть обусловлено разрушением ГС при появлении заряда на поверхности частиц, а также некоторой гидрофобизацией поверхности при адсорбции ПАВ. Гидрофилизация поверхности частиц ЗЮг за счет двуслойной адсорбции ЦТАБ [512] маловероятна вследствие низкой степени покрытия ЗЮг ионами ЦТАБ вблизи изоэлектрической точки. Из расчета энергии взаимодействия сферических частиц при С=ЫО М следует, что коагуляция частиц во вторичном минимуме (доли кТ) невозможна. Она происходит в первичном минимуме при преодолении энергетического барьера. Положительная структурная составляющая расклинивающего давления, ограничивающая его глубину, может быть обусловлена как взаимодействием ГС воды на поверхности ЗЮг, так и взаимодействием адсорбционных слоев ПАВ.. Можно ожидать, что при данной концентрации степень покрытия поверхности кварца молекулами ПАВ близка к 20% [513]. Как видно из рис. 10.3, дальнейшее увеличение концентрации ЦТАБ вновь приводит к ее стабилизации (участок г), что может быть связано с образованием геми-мицелл на поверхности кварца, а также увеличением положительного значения -по-тенциала частиц ЗЮг. [c.179]

    Необходимость определения дисперсного состава частиц с учетом их агрегации в газовых потоках получила широкое признание в начале 60-х годов. К этому же времени относится создание первых образцов приборов, позволяющих разделять частицы на фракции без предварительного выделения из газовой фазы. В дальнейшем традиционные методы дисперсионного анализа (микроскопия, ситовый анализ, седи-ментометрия и воздушная сепарация) постепенно утратили свое значение в технике пыле- и золоулавливания, оставаясь в числе основных при оценке технологических качеств порошков. [c.11]

    Адсорбция комплексонов на твердой фазе описывается с помощью изотермы Ленгмюра и не превышает 0,2 мг/г Механизм ингибирующего действия, вероятно, заключается в избирательной адсорбции на активных центрах образующихся кристаллов, что препятствует их дальнейшему росту и агрегации Низкая адсорбция на твердой фазе позволяет фосфорсодержащим комплексонам перераспределяться в те области кристаллизующегося раствора, где возникает флуктуация плотности (зародыши) Поскольку пересыщенный раствор, в котором находятся микрозародыши твердой фазы является системой, термодинамически неустойчивой, адсорбция комплексона способствует смещению равновесия согласно принципу Ле Шателье в сторону растворения зародышей В результате комплексон высвобождается для взаимодействия с новыми флуктуациями плотности (зародышами) [841, 842] [c.443]

    Способ укладки пептидной цепи (образование спирали или -структуры) часто называют вторичной структурой белка. Дальнейшая укладка молекулы, основанная на бзаимодемствин групп, далеко отстоящих друг от друга вдоль цепи, приводит к формированию третичной структуры. Агрегация мономерных белковых субъединиц в оли-Ьомеры (гл. 4) определяет четвертичную структуру белка. [c.94]


Смотреть страницы где упоминается термин Агрегация дальняя: [c.176]    [c.178]    [c.332]    [c.128]    [c.296]    [c.294]    [c.297]    [c.176]    [c.178]    [c.184]   
Курс коллоидной химии (1976) -- [ c.279 ]




ПОИСК





Смотрите так же термины и статьи:

Агрегация



© 2024 chem21.info Реклама на сайте